Skip to main content

AFS-G/SFS-G/AGI-G/ASI-G Gold Coated High Temperature Fibers

Product information "AFS-G/SFS-G/AGI-G/ASI-G Gold Coated High Temperature Fibers"

Gold Coated, Single Mode, Multi Mode; 190 to 2400 nm; Core Diameter 50 to 400 µm; Mode Field Diameter 4.3, 9.0 µm; Cladding Diameter 125 to 440 µm; Numerical Aperture 0.12 to 0.275

Fiberguide’s AFS-G/SFS-G/AGI-G/ASI-G series of gold coated high temperature optical fibers is designed to achieve the widest temperature range (-269 to +700 °C) of any optical fiber on the market. This, combined with excellent corrosion resistance, and the fiber’s ability to be soldered or brazed, makes it the ideal fiber for many high temperature applications such as turbine flame monitoring, oil and gas down-hole sensing, and high vacuum or pressure applications.

As an option, some types of gold coated high temperature fibers can be provided with a broad selection of shaped tips – standard configurations as well as custom designed shapes. Shaped tip fibers provide optimum control over beam delivery and/or increased efficiency of light collection.

Some of the fibers can also be end capped to achieve higher coupled power into a fiber core by reducing the power density at the air / silica interface, commonly the point of laser damage. End cap diameters and lengths are offered for select numerical apertures and fiber cores size, but can be easily customized for a variety of fiber types and specialized applications.

Additionally, all fiber types can be equipped on demand with Fiberguide’s patented RARe Motheye anti-reflective technology that enhances fiber transmission performance and significantly increases the damage threshold for your application over a large wavelength range.

Key Features:

  • Multi Mode (Step/Graded Index) or Single Mode Fibers
  • Pure/Germanium Doped Fused Silica Core, Fluorine Doped/Pure Silica Cladding
  • Coating: Gold
  • Core / Cladding Sizes: 50/125 to 400/440 µm (MM)
  • Mode Field Diameter / Cladding Sizes: 4.3/125, 9.0/125 µm (SM)
  • Numerical Aperture (NA): 0.12 to 0.275
  • Recommended Bend Radius: Short Term 100 x Clad Diameter, Long Term 200 x Clad Diameter
  • 100% Proof Test Using 4-Axis Bend Method


Applications: Turbine Flame Monitoring; Oil and Gas Down-hole Sensing; High Vacuum Applications; High Pressure Applications

Manufacturer "Fiberguide Industries"
Related links of the manufacturer

Similar products

AFM50/125/250Y Acrylate Coated MM Fiber
300 - 2400 nm; low numerical aperture; Max Operating Temperature 85 °C; Core Diameter 50 µm; Coating Outside Diameter 250 µm Step Index multi mode fiber with pure fused silica core and fluorine doped silica cladding. With a low concentration of hydroxyl groups (OH), this fiber of the Anhydroguide™ series from Fiberguide Industries is suitable for wavelengths in the visible to infrared domain. It is primarily used in photonics applications where individual or bundled large core (> 50μm) multi mode fibers are needed for the transmission of optical energy.This “AFM” fiber features a low numerical aperture (0.12), resulting in a full acceptance angle of 14°. With a cladding diameter of 140 µm and a silicon buffer coating layer, the minimum bend radius recommended by the supplier is 13 mm (short term) or 25 mm (long term) respectively. The fibers are 100% proof tested using a 4-axis bend method with 100 KPSI. Typical applications are bio-analytical sensing, medical lasers, aerospace/defense, spectroscopy, nuclear plasma sensing or industrial laser systems.
Product number: C002937-6
Manufacturer:
AFS-A/SFS-A/AGI-A/ASI-A/UVS-H2A Aluminium Coated High Temperature Fibers
Aluminium Coated, Single Mode, Multi Mode; 190 to 2400 nm; Core Diameter 50 to 400 µm; Mode Field Diameter 4.3, 9.0 µm; Cladding Diameter 125 to 440 µm; Numerical Aperture 0.12 to 0.275 Fiberguide’s AFS-A/SFS-A/AGI-A/ASI-A/UVS-H2A series of aluminium coated fibers are designed for a wide temperature range (-269 to +400 °C) and superior strength (>100 kpsi). This allows for long life at extended stress levels in applications that require tight bends. Also, the strong chemical bond between the silica cladding and the aluminum enables direct termination without pistoning. This bond also makes aluminium coating the ideal choice to preserve deep UV performance in Fiberguide’s Solarguide UVS-H2A series of solarization resistant UV multi mode fiber. Within this series of aluminium coated high temperature fibers, users find step index (AFS/SFS, UVS-H2) and graded index (AGI) multi mode fibers as well as anhydrous silica (ASI) single mode fibers. As an option, some types of aluminium coated high temperature fibers can be provided with a broad selection of shaped tips – standard configurations as well as custom designed shapes. Shaped tip fibers provide optimum control over beam delivery and/or increased efficiency of light collection. Some of the fibers can also be end capped to achieve higher coupled power into a fiber core by reducing the power density at the air / silica interface, commonly the point of laser damage. End cap diameters and lengths are offered for select numerical apertures and fiber cores size, but can be easily customized for a variety of fiber types and specialized applications. Additionally, all fiber types can be equipped on demand with Fiberguide’s patented RARe Motheye anti-reflective technology that enhances fiber transmission performance and significantly increases the damage threshold for your application over a large wavelength range. Key Features: Multi Mode (Step/Graded Index) or Single Mode Fibers Pure Fused Silica Core, Fluorine Doped/Pure Silica Cladding Coating: Aluminium Core / Cladding Sizes: 50/125 to 400/440 µm (MM) Mode Field Diameter / Cladding Sizes: 4.3/125, 9.0/125 µm (SM) Numerical Aperture (NA): 0.12 to 0.275 Recommended Bend Radius: Short Term 100 x Clad Diameter, Long Term 200 x Clad Diameter 100% Proof Test Using 4-Axis Bend Method Applications: High Temperature and Cryogenic Temperature Sensing; Semiconductor Manufacturing; Corrosive and Caustic Environments; Ultra-high Vacuum Devices; Radiation Resistant Sensors; Rocket, Turbine and Jet Engine Monitoring
Product number: SW10693
Manufacturer:
AFS/AFM/AFH/SFS/SFM/SFH All Silica MM Fibers
Multi Mode; 190 to 2400 nm; Core Diameter 50 to 1500 µm; Cladding Diameter 125 to 1650 µm; Coating Acrylate, Polyimide, Nylon, Tefzel, Aluminium, Gold; Numerical Aperture 0.12, 0.22, 0.26 Fiberguide’s Anhydroguide™ (AFS/AFM/AFH) and Superguide™ (SFS/SFM/SFH) silica core, silica clad, polymer coated multi mode fibers are primarily used in photonics applications where individual or bundled large core (>50 µm) multi mode fibers are needed for the transmission of optical energy. These fibers can be coated with a variety of polymers or even metalized with aluminium or gold for extreme temperature performance. While the AFS series features a low hydroxyl ion concentration (low OH) and works in the visible to IR range, SFS variants with high hydroxyl ion concentration are suitable for the UV to visible range. Options include Acrylate (-Y), Polyimide (-T), Nylon (-N), Tefzel (-Z), Aluminium (-A) and Gold (-G) coatings as well as standard (AFS/SFS), high (AFH/SFH) and low (AFM/SFM) numerical aperture. As a further option, fibers can also be provided with a broad selection of shaped tips – standard configurations as well as custom designed shapes. Shaped tip fibers provide optimum control over beam delivery and/or increased efficiency of light collection. Some fiber types can also be end capped to achieve higher coupled power into a fiber core by reducing the power density at the air / silica interface, commonly the point of laser damage. End cap diameters and lengths are offered for select numerical apertures and fiber cores size, but can be easily customized for a variety of fiber types and specialized applications. Additionally, all fiber types can be equipped on demand with Fiberguide’s patented RARe Motheye anti-reflective technology that enhances fiber transmission performance and significantly increases the damage threshold for your application over a large wavelength range. Key Features: Step Index Multi Mode Fibers Pure Fused Silica Core / Fluorine Doped Silica Cladding Silicone Buffer Coating Layer for Nylon & Tefzel Outer Coatings Coatings Acrylate, Polyimide, Nylon, Tefzel, Aluminium, Gold Core / Cladding Sizes: 50/125 to 1500/1650 µm Wavelengths: SFS (High OH) 190 to 1250 nm; AFS (Low OH) 300 to 2400 nm Numerical Aperture (NA): 0.12, 0.22, 0.26 Recommended Bend Radius: Short Term 100 x Clad Diameter, Long Term 200 x Clad Diameter 100% Proof Test Using 4-Axis Bend Method Available Core/Clad Ratios: 1.1 (Standard), 1.2, 1.4, 2.5 Thermocoat (Polyimide), Nylon, Tefzel certified to NAMSA Class VI Applications: Bio-Analytical Sensing; Medical Laser; Aerospace/Defense; Spectroscopy; Nuclear Plasma Sensing; Industrial Laser Systems
Product number: SW10692
Manufacturer:
AFS600/660T Thermocoat Fiberguide
The Anhydroguide™ fiber is drawn from preforms manufactured by the Plasma Outside Deposition (POD) process,
Product number: C003876-0
Manufacturer:

€4.92*
AFSH/SFSH Hard Polymer Coated MM Fibers
Multi Mode; 190 to 2400 nm; Core Diameter 200 to 900 µm; Cladding Diameter 240 to 1000 µm; Coating Tefzel (Natural & Blue); Numerical Aperture 0.22 Fiberguide’s Anhydroguide™ (AFSH) and Superguide™ (SFSH) series of silica core, silica clad, hard polymer coated, polymer outer coated multi mode fibers are similar to Fiberguide’s AFS/AFM/AFH/SFS/SFM/SFH series of silica core, silica clad, polymer coated MM fibers, except there is an added layer of hard polymer on top of the silica cladding. This hard coat serves as stable buffer layer that ensures a sufficient bond between the silica cladding and the polymer outer coating, making these fibers the ideal choice for a variety of medical applications. Other main application areas for the AFSH/SFSH series of hard polymer coated fibers are where individual or bundled large core (>50 µm) multi mode fibers are needed for the transmission of optical energy. While the AFSH series features a low hydroxyl ion concentration (low OH) and works in the visible to IR range, SFSH variants with high hydroxyl ion concentration are suitable for the UV to visible range. Options include natural (-Z) or blue (-C) Tefzel coatings, and fibers can be provided with a broad selection of shaped tips – standard configurations as well as custom designed shapes. Shaped tip fibers provide optimum control over beam delivery and/or increased efficiency of light collection. Some fiber types can also be end capped to achieve higher coupled power into a fiber core by reducing the power density at the air / silica interface, commonly the point of laser damage. End cap diameters and lengths are offered for select numerical apertures and fiber cores size, but can be easily customized for a variety of fiber types and specialized applications. Additionally, all fiber types can be equipped on demand with Fiberguide’s patented RARe Motheye anti-reflective technology that enhances fiber transmission performance and significantly increases the damage threshold for your application over a large wavelength range. Key Features: Step Index Multi Mode Fibers Hard Polymer Buffer Coating Layer Coating: Tefzel (Natural or Blue) Core / Cladding Sizes: 200/240 to 910/1000 µm Wavelengths: SFSH (High OH) 19 to 1250 nm; ASFH (Low OH) 300 to 2400 nm Numerical Aperture (NA): 0.22 Recommended Bend Radius: Short Term 100 x Clad Diameter, Long Term 200 x Clad Diameter 100% Proof Test Using 4-Axis Bend Method Tefzel (Natural & Blue) certified to NAMSA Class VI Applications: Bio-Analytical Sensing; Medical Laser; Aerospace/Defense; Spectroscopy; Nuclear Plasma Sensing; Industrial Laser Systems  
Product number: SW10690
Manufacturer:
AFT/SFT Optical Fiber Tapers
Fiber Type Single Mode, Multi Mode Step & Graded Index; Input Core Diameter 100 to 600 µm; Output Core Diameter 50 to 200 µm; Numerical Aperture 0.12, 0.26; Wavelength 180 to 2400 nm; Sheathing PVC, Stainless Steel Fiberguide’s AFT/SFT series of optical tapers are used for mode mixing, lowering optical power density in high power applications, and converting numerical aperture (NA) in optical power delivery applications. Optical tapers can either be tower drawn, where the length is several meters, or they can be produced using bench-top equipment, making the length a few inches. In both cases, these optical tapers are continuous pieces of fiber, they are not spliced. Tapered optical fibers can be made either by fusing a short tapered section onto a longer fixed diameter fiber or by very carefully controlling the drawing process to produce a single continuous fiber with an integral tapered section. For its AFT/SFT series, Fiberguide uses the latter process since it results in superior fiber strength, alignment precision and optical power transmission. Tapered optical fibers cause optical mode mixing that tends to homogenize spatial power distribution. A larger input core diameter can prevent input damage and allow a smaller diameter pigtail for convenience in adapting to a wide range of optical applications. Tapered optical fibers can be used as a passive optical component to alter the input and / or output divergence (N.A.) with regard to an optical fiber, as a high power coupler for laser energy, as this will spread the energy over a larger area, or simply as a device to relax tolerances in an optical system. To ensure maximum efficiency of light transmission, the numerical aperture (N.A.) of the light entering the taper input should be 0.22 divided by the taper ratio. As an example, assume the input core diameter of the taper is 400 µm and the output core is 200 µm (2:1 taper ratio), then the N.A. of the light entering the taper will be 0.22/2 = 0.11. Additionally, the fibers can be equipped on demand with Fiberguide’s patented RARe Motheye anti-reflective technology that enhances fiber transmission performance and significantly increases the damage threshold for your application over a large wavelength range. Key Features: Fiber Type: Single Mode, Multimode Input Core Sizes: 100 to 600 µm Wavelengths: 190 to 1250 (High OH), 300 to 2400 nm (Low OH ) Numerical Aperture (NA): 0.12, 0.22, 0.26 Input-to-Output Ratios: Up to 3:1 Connector Options: SMA905 Sheathing Options: PVC Tubing, Stainless Steel Monocoil (Tower Drawn Tapers), Rigid Stainless Steel Tubing (Micro Tapers) Coating: Acrylate Length: Minimum Taper Length 2 m, Overall Length <50 m (Tower Drawn Tapers), ~ 6 inches Typical (Micro Tapers) Applications: Laser Marking, Welding, Soldering; Fluid Level Sensors; Laser Surgery, Angioplasty, Lithotripsy; Non-linear Optics; Diode Laser Array Coupling; Spectroscopy; Analytical Instruments; Laser Delivery; Biosensors; Near-field Scanning Optical Microscopy\Raman and IR Spectroscopy; Humidity Sensing; Delivery Systems for Laser Diodes; High-power Laser Transmittance; Dynamic Position Sensing; Fluorescent Detection
Product number: SW10706
Manufacturer:
AGI Graded Index MM Fibers
Multi Mode, Graded Index; 850, 1300 nm; Core Diameter 50, 62.5 µm; Cladding Diameter 125 µm; Coating Acrylate, Polyimide, Aluminium, Gold; Numerical Aperture 0.20, 0.275 Fiberguide’s AGI series of anhydrous graded index multi mode silica core, silica clad, polymer or metal coated fibers feature a graded index profile instead of a step index profile. These fibers are primarily used in data transmission applications where more bandwidth is needed than step index fibers can offer. These fibers are available with acrylate coatings (-Y) and also high performance polyimide (-T), aluminum (-A) and gold (-G) coatings that allow them to exceed the temperature performance levels of standard fibers. As a further option, AGI series fibers can be provided with a broad selection of shaped tips – standard configurations as well as custom designed shapes. Shaped tip fibers provide optimum control over beam delivery and/or increased efficiency of light collection. AGI series fibers can also be end capped to achieve higher coupled power into a fiber core by reducing the power density at the air / silica interface, commonly the point of laser damage. End cap diameters and lengths are offered for select numerical apertures and fiber cores size, but can be easily customized for a variety of fiber types and specialized applications. Additionally, all fiber types can be equipped on demand with Fiberguide’s patented RARe Motheye anti-reflective technology that enhances fiber transmission performance and significantly increases the damage threshold for your application over a large wavelength range. Key Features: Graded Index Multi Mode Fibers Germanium Doped Fused Silica Core / Pure Fused Silica Cladding Coatings: Acrylate, Polyimide, Aluminium, Gold Core / Cladding Sizes: 50/125µm, 62.5/125µm Wavelengths: Optimized for 850nm & 1300nm Numerical Aperture (NA): 0.20, 0.275 Recommended Bend Radius: Short Term 100 x Clad Diameter, Long Term 200 x Clad Diameter 100% Proof Test Using 4-Axis Bend Method Applications: Data Communications; Laser Systems; Medical Applications; Oil & Gas Down-Hole Sensing; Photonic Devices; Optical Sensor Systems
Product number: SW10180
Manufacturer:

Customers also viewed

ODiSI 6000 Fiber Optic Sensing Interrogators
1-8 Channels; Max. Sensor Length/Channel 10, 50 m; Measurement Points/m 384, 768, 1,538; Measurement Rate 10-250 Hz; Strain Measurement Range ±12,000 µɛ; Temperature Measurement Range -40 to 200 °C Luna’s ODiSI 6000 series of optical distributed sensor interrogators are innovative measurement systems specifically designed to address the test challenges of 21st century advanced materials and systems. The systems provide thousands of strain or temperature measurements per meter of a single high-definition fiber sensor. The high-definition data can fully map the contour of strain for a structure under test or the continuous thermal profile of a process in real time. Sensors are flexible, low-profile, require no electrical source, and can be bonded to sharply curved surfaces, embedded withing structures, or mounted directly to electrical surfaces. An ODiSI 6000 series system comes configured with 1, 2, 4 or 8 channels able to measure standard Rayleigh HD-FOS sensors. In standard mode, each channel supports an HD-FOS sensor up to 10 m in length. With the extended range option, up to four channels can support sensors up to 50 m in length each. The ODiSI 6000 series can be configured to measure strain or temperature with a gage pitch (spacing of adjacent gage centerpoints) of 0.65 mm, 1.3 mm or 2.6 mm. When configured for a gage pitch of 0.65 mm, the system acquires 1,538 strain or temperature measurement points along every meter of the HD-FOS sensor. The ODiSI 6000 system is able to measure HD-FOS data at rates up to 250 Hz. The per-channel measurement rate will depend on several factors, including number of channels, gage pitch and sensor length. See specifications in the downloadable data sheet for more information on real-time measurement rates. Key Features: Single- or Multi-channel Measurements of Strain-multiplex: Over 300,000 Measurement Locations Flexible, Lightweight and Easy to Install Sensors Reduce Time to First Measurement Passive, Corrosion Resistant, Dielectric, Flexible Sensors Go Where Other Sensors Can’t – in Bends, Around Corners, Embedded Inside Materials Long Sensor Life – No Drift or Recalibration Required, Cycle Counts >107 Large Strain Range and High Resolution Allow for Mapping of Complex Strain Fields and Large Strain Gradients Number of Parallel Channels: 1 to 8 Maximum Sensor Length Per Channel: 10, 50 m Measurement Points Per Meter of Sensor: 384, 768, 1,538 Measurement Rates: 10 to 250 Hz Strain Measurement Range: ±12,000 µɛ Strain Measurement Resolution: 1 µɛ Temperature Measurement Range: -40 to 200 °C Temperature Measurement Resolution: 0.1 °C Dimensions: 340 x 350 x 110 mm Applications: Characterize Strain on/in New Materials and Complex Structures; Profile Temperature In-situ to Maximize the Efficiency of Critical Processes; Measure Two – and Three – Dimensional Strain Fields to Validate FE Models; Evaluate Multi-material Joining; Embed Sensors Within Materials to Create “Smart Parts”
Product number: SW11265
Manufacturer:
SPAD Single-Photon InGaAs/InP Avalanche Photodiodes APD
1100-1600 nm; Responsivity 0.8 A/W; Capacitance 0.25 pF; Dark Current 0.1 nA; Package 3-pin TO 46, 6-pin TO-8, 10-pin Mini-Flat Wooriro’s SPAD series (Single Photon Avalanche Diode) comprises InGaAs/InP APD devices specially designed and fabricated for the use of single photon avalanche detection (SPAD) with internal or external cooling systems. SPAD avalanche photodiodes (APDs) can be operated at the voltage above breakdown for short periods, this mode of operation is called “Geiger mode” or “Gated mode” operation. Ultra-low noise operation is possible at a case temperature of -40 °C. The devices can be used for quantum key distribution (QKD) receivers. SPAD devices are available without an integrated thermoelectric cooling device (TEC) in a 3-pin TO-46 package or with integrated TEC in a 6-pin TO-8 package as well as in a butterfly-style 10-pin Mini-Flat package. Key Features: Low Capacitance: <0.3 pF High Speed Optical Wavelength Range: 1100 nm to 1600 nm Coaxial Type Pigtail Low Noise Breakdown Voltage VBR: 50 V to 90 V (ID = 100 µA) Total Dark Current: 0.1 nA Typ. Capacitance: 0.25 pF Typ. Quantum Efficiency: 70% Typ. Responsivity: 0.8 A/W Typ. (1550 nm, M=1) Cooling System: External or Built-in 3-stage TEC Temperature Coefficient of VBR: 0.11 V/°C Typ. Max. AfterPulse Probability: 10% Dark Count Rate: 2.0 kHz (Standard), 0.5 kHz (Premium Grade) (10 MHz Gate Frequency, 2 ns Gate Pulse, 20% PDE) Detection Efficiency (PDE): 20% Typ. (10 MHz Gate Frequency, 2 ns Gate Pulse) Package: 3-pin TO 46, 6-pin TO-8, 10-pin Butterfly-Type Mini-Flat Applications: Special Applications Requiring Single Photon Counting such as QKD , OTDR, etc.
Product number: SW11674
Manufacturer:
APC/SPC Polymer Clad MM Fibers
Multi Mode; 190 to 2200 nm; Core Diameter 200 to 2000 µm; Cladding Diameter 300 to 2150 µm; Coating Nylon; Numerical Aperture 0.37 Fiberguide’s Anhydroguide™ (APC) and Superguide™ (SPC) series of silica core, polymer clad, Nylon coated multi mode fibers feature a polymer cladding. This polymer cladding enables a numerical aperture (NA) of 0.37, but it differs from the hard polymer cladding of Fiberguide’s APCH/SPCH series of hard polymer clad MM fibers because the polymer cladding offers better radiation stability for nuclear research and sensing applications. While the APC series features a low hydroxyl ion concentration (low OH) and works in the visible to IR range, SPC variants with high hydroxyl ion concentration are suitable for the UV to visible range. Both series are coated with NAMSA Class VI Nylon. As an option, fibers can be provided with a broad selection of shaped tips  – standard configurations as well as custom designed shapes. Shaped tip fibers provide optimum control over beam delivery and/or increased efficiency of light collection. Some fiber types can also be end capped to achieve higher coupled power into a fiber core by reducing the power density at the air / silica interface, commonly the point of laser damage. End cap diameters and lengths are offered for select numerical apertures and fiber cores size, but can be easily customized for a variety of fiber types and specialized applications. Additionally, all fiber types can be equipped on demand with Fiberguide’s patented RARe Motheye anti-reflective technology that enhances fiber transmission performance and significantly increases the damage threshold for your application over a large wavelength range. Key Features: Step Index Multi Mode Fibers Pure Fused Silica Core / Polymer Cladding Coating: Nylon Core / Cladding Sizes: 200/300 to 2000/2150 µm Wavelengths: SPC (High OH) 190 to 1250 nm, APC (Low OH) 400 to 2200 nm Numerical Aperture (NA): 0.37 Recommended Bend Radius: Short Term 100 x Clad Diameter, Long Term 200 x Clad Diameter 100% Proof Test Using 4-Axis Bend Method Nylon certified to NAMSA Class VI Applications: Bio-Analytical Sensing; Medical Laser; Dental Curing; Spectroscopy; Nuclear Plasma Sensing; Photodynamic Therapy
Product number: SW10691
Manufacturer:
Germanium-doped High Non-linear Optical Fibers
Cut off Wavelength 1000, 1500 nm; Numerical Aperture 0.3; Core Dia. 3, 4,5 µm; Cladding Dia. 125 µm; Optical Loss <5 dB/km FORC-Photonics’ series of Germanium-doped high non-linear single mode fibers feature core diameters of 3 and 4.5 µm. HNLF fibers are designed to maximize fiber nonlinearity and minimize optical loss, which makes such fibers optimal for constructing highly efficient Raman lasers and amplifiers, dispersion compensators and various non-linear devices. The HNLF DS fibers with shifted dispersion are designed for applications requiring a shift of the zero dispersion wavelength to the 1550 nm spectral region: supercontinuum generation, parametric conversion, etc. Other parameters including core and PM versions are available on the request. Key Features: Germanium-doped Fibers Core Diameter: 3, 4.5 µm Cladding Diameter: 125 µm Cut off Wavelength: 1000, 1500 nm Core Numerical Aperture: 0.3 Optical Loss: <5 dB/km Applications: Amplifiers; Lasers; Superfluorescent Fiber Sources
Product number: SW11014
Manufacturer:
Only 10 available
Copper Tubes Fin Heat Exchanger C032363_002_002
Aluminum fins; Copper tubes; 1 fan; 147.1x159x50.8 mm; 10-pass; 150psi/10bar max; 7.6 lpm max Water-to-air heat exchanger main dimensions HX housing: 147,1 mm x 159 mm x 50,8 mm Tubes and tube connections: Copper, OD 3/8" Connection tube length 55,8 mm Fins: Aluminum, thickness 0,15 mm HX housing and end plates: stainless steel, 1 mm without fan plate Specified for fluid pressures of at least 150psi/10bar max. 7,6 l/min water flow  
Product number: C032363-1
Manufacturer:

€202.76*