Skip to main content

TYDF-DC-10/125 Thulium-Ytterbium Co-doped Optical Fiber

Product information "TYDF-DC-10/125 Thulium-Ytterbium Co-doped Optical Fiber"

Cut off Wavelength 2600 nm; Numerical Aperture Clad 0.44; Core Dia. 11.5 µm; Cladding Dia. 125 µm

FORC-Photonics’ TYDF-DC-10/125 Thulium-Ytterbium co-doped optical fiber is specially designed for highly efficient pumping with multi mode (MM) pump sources at 915/975 nm. Pumping with conventional sources near 790 nm is also possible, as well as core pumping with EDFL operating at 1550 to 1600nm.

Key Features:

  • Thulium-Ytterbium Co-doped Fiber
  • Core Diameter: 11.5 µm
  • Clad Absorption: >3.5, >5 dB/m
  • Cladding Diameter: 125 µm
  • Cut off Wavelength: 2600 nm
  • Clad Numerical Aperture: 0.44


Application: Highly Efficient Pumping With Multi Mode (MM) Pump Sources at 915/075 nm

Manufacturer "FORC Photonics"
Related links of the manufacturer

Similar products

Bismuth-doped Optical Fibers
Cut off Wavelength 980, 1350 nm; Numerical Aperture 0.09 to 0.27; Core Dia. 3.5 to 14 µm; Cladding Dia. 125 µm; Background Loss <10 to <30 dB/km FORC-Photonics’ series of Bismuth-doped single mode (SM) optical fibers feature core diameters of 5.6 and 6.5 µm. The Bismuth-Phosphorus co-doped fiber BPDF-SM-6/125-1320 is specially designed for amplifiers, lasers or superfluorescent fiber sources operating at 1270 to 1370 nm, while the Bismuth-Germanium co-doped fiber BGDF-SM-7/125-1430 series is specially designed for amplifiers, lasers or superfluorescent fiber sources operating at 1370 to 1490nm. Key Features: Bismuth-doped Fibers Phosphorus or Germanium Co-doped Core Diameter: 5.6, 6.5 µm Core Absorption: 0.3, 0.5 dB/m Cladding Diameter: 125 µm Cut off Wavelength: 1050, 1100 nm Core Numerical Aperture: 0.14 Typ. Peak Gain: >0.2 dB/m Applications: Amplifiers; Lasers; Superfluorescent Fiber Sources
Product number: SW11013
Manufacturer:
ER Series Erbium-doped Fibers
Cut off Wavelength ≤980, ≤1300, ≤1400 nm; Numerical Aperture 0.22, 0.23; Mode Field Diameter 3.5 to 5.6 µm; Attenuation ≤15.0; Cladding/Coating Dia. 80, 125 µm/165, 245 µm; Dual Acrylate Coating Manufactured with Corning’s patented outside vapor deposition (OVD) process, Corning® ER series of Erbium-doped specialty fibers set the worldwide standard for uniformity and reliability. Corning offers erbium-doped fibers with hermetic coatings for significant advantage with respect to mechanical reliability and resistance to hydrogen-induced optical attenuation degradation. These erbium-doped fibers have a proven track record in state-of-the-art optical amplifiers and exhibit consistently low splice loss when coupled with fibers such as Corning® HI 1060 FLEX, Corning® HI 980, and Corning SMF-28e+® optical fiber. Erbium-doped fiber designs are available for conventional C-band, L-band, and reduced-clad (80 μm) applications. Corning’s range of Erbium-doped fibers includes product series like ER 1550C3, ER 1550C3 LC, ER 1600L3 and RC ER 1550C3. For more information please refer to the Corning® ER Erbium-doped specialty optical fibers datasheet. In typical high-performance amplifiers built with Corning’s Erbium-doped fiber, gain consistency is maximized due to spectral uniformity of the fiber, eliminating the need for frequent adjustments to gain flattening filter design. Variations in gain spectrum and pump power requirements are greatly reduced, which makes for a more predictable amplifier manufacturing process and translates directly to lower costs for customers. Key Features: Outstanding Consistency and Uniformity Patented Outside Vapor Deposition (OVD) Process OVD Manufacturing Consistency Provides Repeatability for Gain Spectrum Allowing for the Reduction of Lot Qualifications in Amplifier Deployment Hermetic Coating for Increased Environmental Stability and Reliability Dual Acrylate Coating System Provides Excellent Protection and Superior Mechanical Robustness Short and Long Cutoff Wavelength C-band Versions Available Excellent Geometry Control Mode-field Diameter Designed to Match Corning® High Index Specialty Fiber Efficient Coupling With an EDFA Applications: Single and Multi-channel Optical Amplifiers; Digital and Analog Systems; Community Antenna Television (CATV) Amplifier
Product number: SW10998
Manufacturer:
Erbium-doped Optical Fibers
Cut off Wavelength 980, 1350 nm; Numerical Aperture 0.09 to 0.27; Core Dia. 3.5 to 14 µm; Cladding Dia. 125 µm; Background Loss <10 to <30 dB/km FORC-Photonics’ series of Erbium-doped single mode (SM) optical fibers feature core diameters from 3.5 to 14 µm. The EDF-4/125-10 fiber is specially designed to achieve the highest efficiency of telecommunication amplifiers, while the Erbium-doped fiber EDF-4/125-25 is designed to minimize the amplifier length without degradation of the pump-to-signal conversion efficiency. FORC-Photonics’ Erbium-doped fiber EDF-4/125-50 is designed for amplification of ultra-short pulses, when high efficiency, a short amplifier length and a high negative dispersion (-30 to -50 ps/nm/km) are required, while the EDF-14/125-35 Erbium-doped fiber is designed for low-nonlinearity and high pulse energy amplifiers. Key Features: Erbium-doped Fibers Core Diameter: 3.5 to 14 µm Core Absorption: 6 to 50 dB/m Cladding Diameter: 125 µm Cut off Wavelength: 980, 1350 nm Core Numerical Aperture: 0.09 to 0.27 Background Loss: <10 to <30 dB/km Applications: High Efficiency Telecommunication Amplifiers; Amplification of Ultra-short Pulses; Low-nonlinearity, High Pulse Energy Amplifiers
Product number: SW11009
Manufacturer:
GDF Germanate Glass Core Optical Fibers
Cut off Wavelength 700, 1400 nm; Core Dia. 2.2, 8x7 µm; Cladding Dia. 125 µm; GeO2 Concentration 75, 98% FORC-Photonics’ GDF series of Germanate glass core optical fibers is available for single mode (SM) or multi mode (MM) applications. GDF series fibers feature core diameters of 2.2 µm (round, GDF-SM-2.2/125-75) and 8x7 µm (elliptical, GDF-MM-8/125-98). The GDF-SM-2.2/125-75 single mode version is a higly Ge-doped silica Germanate glass core fiber used for a variety of nonlinear applications. The GDF-MM-8/125-98 multi mode version is a Germanate glass core fiber, also used for a variety of nonlinear applications. Key Features: Germanium-doped Fibers Germanate Glass Core, GeO2 Concentration: 75, 98% Core Diameter: 2.2 µm, 8x7 µm (elliptical) Cladding Diameter: 125 µm Coating Diameter (GDF-MM-8/125-98): 250 µm Cut off Wavelength: 700, 1400 nm Minimum Loss (GDF-SM-2.2/125-75): 20 dB/km Attenuation (GDF-MM-8/125-98): 110, 200 dB/km Typ. Peak Gain: >0.2 dB/m
Product number: SW11015
Manufacturer:
Germanium-doped High Non-linear Optical Fibers
Cut off Wavelength 1000, 1500 nm; Numerical Aperture 0.3; Core Dia. 3, 4,5 µm; Cladding Dia. 125 µm; Optical Loss <5 dB/km FORC-Photonics’ series of Germanium-doped high non-linear single mode fibers feature core diameters of 3 and 4.5 µm. HNLF fibers are designed to maximize fiber nonlinearity and minimize optical loss, which makes such fibers optimal for constructing highly efficient Raman lasers and amplifiers, dispersion compensators and various non-linear devices. The HNLF DS fibers with shifted dispersion are designed for applications requiring a shift of the zero dispersion wavelength to the 1550 nm spectral region: supercontinuum generation, parametric conversion, etc. Other parameters including core and PM versions are available on the request. Key Features: Germanium-doped Fibers Core Diameter: 3, 4.5 µm Cladding Diameter: 125 µm Cut off Wavelength: 1000, 1500 nm Core Numerical Aperture: 0.3 Optical Loss: <5 dB/km Applications: Amplifiers; Lasers; Superfluorescent Fiber Sources
Product number: SW11014
Manufacturer:
PDF-5/125 Phosphorus-doped Optical Fibers
Cut off Wavelength 900 nm; Numerical Aperture 0.17, 0.18; Core Dia. 5 µm; Cladding Dia. 125 µm; Raman Gain >5.0, >5.8 dB/km*W FORC-Photonics’ PDF-5/125 series of Phosphorus-doped single mode (SM) optical fibers is specially designed for highly efficient Raman lasers and amplifiers operating in the 1100 to 1600 nm spectral range. The main advantage of phosphorus-doped fiber is a three times higher value of the Raman shift as compared to germanium-doped fibers. This feature allows to strongly simplify the Raman fiber laser and amplifier design. For example, to construct a high-power laser @ 1480 nm required for pumping Er-doped fibers, only two cascades of Raman wavelength transformation are necessary, whereas six cascades are necessary in the case of Ge-doped fibers. FORC-Photonics’ PDF-5/125PM series of Phosphorus-doped polarization maintaining (PM) optical fibers is specially designed with the ability to maintain polarization. Key Features: Phosphorus-doped Fibers Core Diameter: 5 µm Cladding Diameter: 125 µm Cut off Wavelength: 900 nm Core Numerical Aperture: 0.17, 0.18 (PDF-5/125PM) Raman Gain: >5.0, >5.8 (PDF-5/125-P) dB/km*W Optical Loss: <1 to <20 dB/km Applications: Highly Efficient Raman Lasers and Amplifiers
Product number: SW11012
Manufacturer:
SBS-DC SBS-suppressed Optical Fibers
Numerical Aperture 0.09; Core Dia. 20 µm; Cladding Dia. 127 µm; Gray Loss <20 dB/km; Polarization Extinction Ratio >20 dB FORC-Photonics’ SBS-DC series of SBS-suppressed optical fibers feature a suppressed stimulated Brillouin scattering gain. Stimulated Brillouin scattering (SBS) is the major factor limiting maximal power of narrow-band fiber lasers (less than 100 MHz linewidth). It is especially crucial in applications which require small mode field diameter (MFD), i.e. Raman amplifiers. Suppression of SBS gain, while maintaining MFD (and Raman gain) becomes a very important task in such fibers. Another promising application of single-frequency lasers is LIDAR (Light Detection And Ranging). In the case of all-fiber systems, it is the passive fibers at the amplifier output (pigtails of isolators, circulators, collimators) that limit the maximum achievable peak power. Thus, development of large mode area (LMA) passive fibers with increased SBS threshold (as compared to standard LMA fibers) is more and more critical for those applications. To suppress SBS gain for a fixed MFD, FORC-Photonics uses a specially designed multi-layer, multi-components doped core. It allows to suppress SBS gain by 3 to 5 dB relative to standard, uniformly doped Ge-doped passive fibers with the same MFD. The developed method allows FORC-Photonics to design custom dopants distribution over the core to suppress SBS by 3 to 5 dB for most of the actual optical refractive index profiles (any core numerical aperture and diameter). The SBS-DC-20/125-1550PM polarization maintaining (PM) fiber has been specially designed to be used in pigtails of output components (isolators, collimators, pump-and-signal combiners etc.) of high peak-power single-frequency lasers operated near 1550 nm. The fiber is intended for utilization in systems with the ability to maintain polarization. Fibers with suppressed SBS-gain for a custom designed operating wavelength, core numerical aperture (NA) and diameter are available on request. Please contact AMS Technologies to discuss your customized SBS-suppressed optical fiber solution. Key Features: Suppressed Stimulated Brillouin Scattering (SBS) Gain Core Diameter: 20 µm Cladding Diameter: 127 µm Core Numerical Aperture: 0.09 Gray Loss: <20 dB/km Polarization Extinction Ratio (After 2 m): >20 dB Applications: Narrow-band Fiber Lasers; Raman Amplifiers; Pigtails of Output Components (Isolators, Collimators, Pump-and-signal Combiners etc.) of High Peak-power Single-frequency Lasers
Product number: SW11016
Manufacturer:

Customers also viewed

Acousto-Optic Tunable Filters
Wavelength 351-4500 nm; Active Aperture 2-12 mm; Bandwidth 0.3-12 nm; Acousto-optic tunable filters (AOTF) are used to rapidly and dynamically select a specific wavelength from a broadband or multi-line laser source. As the applied RF frequency is varied, the transmitted wavelength changes, “tuning” the wavelength of the beam or image in tens of microseconds or less. An extensive line of AO tunable filters is available for wavelength from the UV through mid-IR, with resolution bandwidths of less than 1nm, with options such as large-aperture imaging filtering and sideband suppression. Fiber-coupled acousto-optic tunable filters devices are available upon request.AOTFs with apertures less than 6 mm are typically used that have less than tens of nm of resolution bandwidth at NIR wavelengths and less than ten nm at visible wavelengths. A quasi-collinear AOTF can deliver < 1 nm resolution bandwidth if operated with highly collimated light. AOTFs with larger apertures (> 6 mm) are a powerful tool for spectral imaging, rapidly and efficiently scanning an entire image in wavelength. This is of use in high-speed applications like hyperspectral imaging, confocal microscopy and on-line process control. The cost of AOTFs increases significantly for very large apertures, but they deliver unmatched speed for time-sensitive multispectral measurements in industry and biotech, approaching real-time video rate spectral imaging.  Gooch & Housego’s acousto-optic tunable filters are manufactured using high quality TeO2 crystals grown in-house, polished and fabricated to rigorous standards, with wavelengths from 350 nm to 4.4 µm in a wide variety of apertures and resolution bandwidths. It is possible to filter images up to 25 mm across, meet exceptionally low driver power requirements or design an AOTF to select and transmit multiple discrete wavelengths.Acousto-optic tunable filters often exhibit light leakage outside the resolution bandwidth of interest, typically at 10-20 dB below peak power. This is due to the response function of the AOTF itself but can be minimized using G&H’s patented techniques. Sideband suppression is available in several models, reducing out of band side lobes by greater than 20 dB relative to the primary beam. The AOTF product family includes application-specific solutions for illumination or excitation wavelength selection, as well as multispectral or hyperspectral imaging. For best performance, we recommend a matched RF driver, including the latest digital frequency synthesizer (DFS) driver technology and random access wavelength control. Applications: Confocal Microscopy; Fluorescence Imaging; Hyperspectral Imaging; Imaging Spectroscopy; Laser Wavelength Tuning; On-Line Process Control; Spectroscopy; Wavelength Selection Series Wavelength Active Aperture Bandwidth Downloads AOTF 2837-31 351 - 430 nm 2.5 mm 1.0 nm Datasheet      TF525-250-6-3-GH19A 400 - 650 nm 3 mm 3 nm Datasheet      AOTF 3151-01 400 - 650 nm 2.5 mm 2.5 nm Datasheet      TF550-300-4-6-GH57A AOTF 400 - 700 nm 6 mm 4 nm Datasheet      TF560-280-1-5-NT2 AOTF 420 - 700 nm 5 mm 0.3 nm Datasheet      AOTF 2838-01 450 - 670 nm 2.5 mm 1.3 nm Datasheet      AOTF 2885-02 450 - 670 nm 2.5 mm 2 nm Datasheet      AOTF 2885-04 450 - 670 nm 2.5 mm 4 nm Datasheet      TF625-350-2-11-BR1A AOTF 450 - 800 nm 11 x 12 mm 1.5 nm Datasheet      TF850-500-10-6-GH58A AOTF 600 - 1100 nm 6 mm 10 nm Datasheet      AOTF 2986-01 640 - 1100 nm 2.5 mm 5 nm Datasheet      TF950-500-1-2-GH96 700 - 1200 nm 2 mm 0.6 nm       AOTF 2996-01 1100 - 2000 nm 2.5 mm 12 nm Datasheet  Driver Driver I-TF1650-1100-1-3-GH107 1100 - 2200 nm 3 mm 1.0 nm       TF1875-1250-10-6-GH59A 1250 - 2500 nm 6 mm 10 nm Datasheet      I-TF2250-1500-2-3-GH107 1500 - 3000 nm 3 mm 2 nm       I-TF3250-2500-3-3-GH107 2000 - 4500 nm 3 mm 3 nm      
Product number: SW11458
Manufacturer: