Skip to main content

FFS-X SM Fiber Couplers

Product information "FFS-X SM Fiber Couplers"

Fused; Fiber Type SM; 450-1599 nm; Number of Legs 1x2, 2x2; Splitting Ratio 1/99,999-50/50, Other; Fiber Length 0.5, 1 m; RL ≥50 dB; Dimensions Ø3.0x50/60, Ø5.0x75, 80x10x8, 5x5x85 mm

Gooch & Housego’s FFS-X series of single mode (SM) fiber couplers split or combine light in the visible or (near) infrared regions. The couplers utilize Gooch & Housego’s (G&H) low-loss fused fiber technology. No light leaves the fiber, therefore no alignment is required and there are no unwanted reflections. Furthermore, the output fiber pigtails may be directly integrated into beam delivery systems.

Visible Wavelength SM Fiber Couplers:
Within the FFS-xxxxxxxxx series of visible wavelength fiber couplers, versions optimized for any wavelength within the range of 450 to 700 nm may be selected. These couplers are designed for applications in display systems, sensors and biomedical equipment.

Near Infrared SM Fiber Couplers:
G&H’s FFS-xxxxxxxxx series of near infrared couplers splits light at any selected wavelength from 700 to 1199 nm. These couplers are designed for applications in fiber laser, sensor and avionics applications.

Ultra-low Ratio Tap SM Fiber Couplers:
G&H’s FFS-xxxxxxAxx series of ultra-low ratio tap couplers splits a very small amount of light from a signal path to a tap port. Suitable for very high optical power, its main application is in the monitoring of optical sources such as fiber lasers. Low tap ratios such as 0.1%, 0.01% or 0.001% enable the monitoring photodetector to operate without damage or saturation.

Gooch & Housego proprietary manufacturing technology provides ultra-low loss in the signal path, thereby maximizing optical power handling. Consistently high return loss (>55 dB) reduces the amount of optical power reflected back along the input fiber. This helps the fiber laser operate in a stable manner. Standard ultra-low ratio parts are available for wavelengths from 700 to 1599 nm. For other wavelengths, coupling ratios or customized fiber types please contact AMS Technologies.

Key Features:

  • Available at Wide Variety of Operating Wavelengths: 450 to 1599 nm
  • Coupling Ratio: 1% to 50%, Plus 0.1%, 0.01% and 0.001% Ultra-low Coupling Ratio Versions
  • All Fiber – No Lens Alignment Required
  • No Unwanted Reflections
  • High Return Loss (RL): ≥50 dB (Ultra-Low Coupling Ratio Versions)
  • High Optical Power Handling: 4 W
  • Fiber Type: Specialty Single Mode (SM) Fiber
  • Number of Legs: 1x2, 2x2
  • Pigtail Length: 0.5, 1 m
  • Custom Designs Available
  • Connector Type: FC/PC, FC/APC, SC/APC, FC/UPC, SC/UPC, LC, None
  • Dimensions: Ø3.0 x 50/60, Ø5.0 x 75, 80 x 10 x 8, 5 x 5 x 85 mm

Applications: Visible and Display Systems; Fiber Lasers; Sensors; Raman Amplifiers; High-power EDFAs; Avionics; Biomedical Equipment; Research

Manufacturer "Gooch & Housego"
Gooch & Housego is a manufacturer of precision optical components and subsystems, enabling a number of key technologies such as crystal growth, electro optics, fiber optics, optical coatings, acousto optics and RF electronics. Formed from leading established companies in these complementary technologies, Gooch & Housego is a leading supplier to the world´s major optical and laser system manufacturers. Target markets include industrial laser, biomedical, defense and metrology.
Related links of the manufacturer

Customers also viewed

Beamsplitters & Combiners
PM or SM Splitters/Combiners; 1550 nm, Other; Splitting Ratio 50/50-90/10; PDL ±0.25 dB; Directivity >50 dB OZ Optics’ fiber optic beamsplitters are used to divide light from one fiber into two or more fibers. Light from an input fiber is first collimated, then sent through a beam-splitting optic to divide it into two. The resultant output beams are then focused back into the output fibers. Both 1xN and 2xN splitters can be constructed in this fashion with as many as eight or more outputs, with both low return losses and low insertion losses. Standard parts available in this series are FOBS-12P (1x2) and FOBS-22P (2x2) pigtail-style splitters, FOBS-12 (1x2) and FOBS-22 (2x2) receptacle-style splitters, as well as LDBS-12P (pigtail-style) and LDBS-1 (receptacle-style) laser diode to fiber splitters, and finally ULBS-12P (pigtail-style) and ULBS-1 (receptacle-style) laser to fiber splitters This design is extremely flexible, allowing to use different fiber types on different ports, and different beamsplitter optics inside. Custom designs combining circulators, polarizing splitters and non-polarizing splitters in the same package are routinely manufactured. Splitters can be made with either fibers permanently attached to each port (pigtail style) or with receptacles on each port that one can plug your fiber into (receptacle style). OZ Optics can also build source to fiber couplers with built-in beamsplitters for either laser or laser diode sources. Contact AMS Technologies for details. If size is a concern, we recommend that you consider OZ Optics’ miniature line of splitters. Within OZ Optics’ series of beamsplitters and combiners, the two most common types of splitters offered are polarizing beamsplitters and polarization maintaining (PM) beamsplitters. Polarizing beamsplitters split incoming light into two orthogonal states. They can also be used to combine the light from two fibers into a single output fiber. When used as a beam combiner, each input signal will transmit along a different output polarization axis. PM splitters use a partially reflecting mirror to transmit a portion of the light from the input fiber to the main output fiber and reflect the remainder of the light to the second output fiber. All ports made using polarization maintaining fiber are aligned so that polarized light aligned parallel to the stress rods on the input fiber emerges from the output fibers in the same manner, maintaining the polarization state to a high degree. Splitters that only split off a small portion of the input light are commonly known as taps and often used for power monitoring applications. For a very cost-effective alternative configuration, combining the functions of a tap and monitor photodiode in a single unit, we invite you to review OZ Optics’ OPM series of inline optical taps and monitors. Key Features: High Power Handling High Extinction Ratio Highly Modular and Flexible Design Wide Wavelength Range Bi-directional Broadband Performance Custom Designs Welcomed Mode-independent Behavior in Multi Mode (MM) Fiber Applications Splitting Ratio: 50/50 Standard, Custom Split Ratios 50/50 to 95/5 Available on Request Splitting Ratio Tolerance: ±3% (50/50 Splitters), ±2% (90/10 Splitters) Central Wavelength: 1550 nm Standard, Other Wavelengths on Request Bandwidth: ±1.5% of Central Wavelength Wavelength Dependent Loss (WDL): 0.1 dB (1520-1570 nm) Polarization Extinction Ratio: 20 dB Min., 23 dB Typ. (630-1600 nm), 17 dB Min., 20 dB Typ. (400-630 nm) Polarization Dependent Loss (PDL): ±0.25 dB Directivity: >50 dB Return Loss (RL): 30 dB to 60 dB Insertion Loss (IL): <0.5 dB to <1.0 dB Power Handling: >1 W (+30 dBm) Operating Temperature Range: 0°C to +70°C Applications: EDFA Amplifier; Raman Amplifier Combiner; Polarization Mode Dispersion Compensation; Polarization Extinction Ratio (PER) Measurements; Fiber Optic Sensors; Coherent Communication Systems; Quantum Cryptography; Return Loss (RL) Measurement
Product number: SW11902
Manufacturer:

PZ1 Fiber Stretchers
High Speed; Fiber Type SM, PM, RC; 780-1625 nm; Fiber Length 5-17 m; Fiber Stretch 0.035-0.21 µm/V; Fiber Leads 1 m, 0.9 mm OD Jacket; Connector Type Bare Fiber, FC/PC, FC/APC The PZ1 series are the high-speed members of Optiphase’s family of fiber stretchers. At the core of the PZ1 high-speed fiber stretchers is a fiber wound piezoelectric element for use in a wide range of optical interferometric measurement and sensing system applications. Optiphase’s expertise in the design, manufacture and use of all-fiber interferometers has produced a unique multi-layer winding approach resulting in an enhanced modulation function while maintaining a high operational frequency. PZ1 high-speed fiber stretchers are available with single mode (SM), commercial polarization maintaining (PM, Panda or Bowtie) or SM reduced cladding (RC) fiber types PZ1 high-speed fiber stretchers deliver a high performance to cost ratio, exceeding all other known competitive devices. The compact and low-profile form factor makes the PZ1 series easily configurable into small spaces. In addition, Optiphase fiber stretchers are unique in that they do not require proprietary drivers. For most low-voltage applications (<±15 V), Optiphase stretchers can be driven by standard electronics such as signal generators, op-amps or other laboratory equipment without modification. For more information on how to drive PZ1 high-speed fiber stretchers see the downloadable application note. Key Features: High Speed Compact Package Fiber Type: Single Mode (SM), Polarization Maintaining (PM )or Reduced Cladding SM (RC) Fiber Multiple Termination Choices Unique Multi-layer Winding Can Be Driven With General Purpose Electronics Operational Wavelength: 780 to 1625 nm Fiber Stretch: 0.035 to 0.21 µm/V Optical Path Displacement (n = 1): 0.05, 0.2, 0.3 µm/V Time Delay: 0.00017 to 0.001 ps/V Fiber Length: 5, 12.3, 17 m Inclusive Fiber Wind: 4 Layer (1 Layer PM Version Available) Optical Loss: ≤0.5 dB Maximum Voltage Range: ±500 V (Off Resonance, 1,000 V Peak-to-Peak) Fiber Leads: 1 m, 900 μm Loose Tube Connector Type: Bare Fiber, FC/PC, FC/APC Dimensions: 50.8 x 50.8 x 21.6 mm Applications: Open Loop Demodulation; Sensor Simulation; Variable Optical Delay; General Purpose Fiber Interferometry; Large-angle Modulation of Interferometric Phase
Product number: SW11360
Manufacturer: