Multistage TECs are useful when usual one-stage TECs are not able to provide required temperature difference. Additional stages increase achievable ΔT but also leads to more power consumption and reduction of efficiency of the thermoelectric system. KRYOTHERM produces high efficient two stages TECs with ΔT up to 94K and unique cooling capacity up to 95W. Optimized thermoelectric materials are used for cascades of three and four stage TECs. It allows reaching the maximum value of ΔT . KRYOTHERM produces multistage TECs with ΔT up to 140 K, optimal dimensions and low power consumption. ### **Applications:** - CCD-matrix and infrared photodetectors cooling; - hand held thermal viewer; - x-ray spectrometers; - blood and blood plasma transportation refrigerators; - low temperatures thermostats; - scientific and laboratory equipment; - thermocalibrators; - low noise amplifier freezers; - oil clouding-point testers; - ice-water coolers; - dew point sensors. #### Two stage TEC | Two stage thermoelectric coolers | | | | | | | | | | | | |----------------------------------|--------|---------|---------|--------|-------|----------------|------|-----|-----|-----|--------| | Turno | lmax, | Qmax, | Umax, | ΔTmax, | Rac, | Dimensions, mm | | | | | Docien | | Туре | (Amps) | (Watts) | (Volts) | (K) | (Ohm) | Α | В | A1 | B1 | Н | Design | | TB-2-(11-4)-1,5 | 1,0 | 0,4 | 1,3 | 93 | 1,26 | 6,0 | 4,0 | 4,0 | 2,0 | 6,7 | | | TB-2-(11-4)-1,2 | 1,2 | 0,5 | 1,3 | 92 | 1,55 | 6,0 | 4,0 | 4,0 | 2,0 | 6,1 | 3 | | TB-2-(11-4)-1,0 | 1,5 | 0,6 | 1,3 | 92 | 0,85 | 6,0 | 4,0 | 4,0 | 2,0 | 5,7 | | | TB-2-(17-4)-1,5 | 1,1 | 0,4 | 2,0 | 94 | 1,85 | 6,0 | 8,0 | 2,0 | 4,0 | 6,7 | | | TB-2-(17-4)-1,2 | 1,3 | 0,5 | 2,0 | 93 | 1,50 | 6,0 | 8,0 | 2,0 | 4,0 | 6,1 | | | TB-2-(17-4)-1,0 | 1,6 | 0,6 | 2,0 | 91 | 1,26 | 6,0 | 8,0 | 2,0 | 4,0 | 5,7 | | | TB-2-(31-8)-1,5 | 1,1 | 0,9 | 3,6 | 93 | 3,40 | 8,0 | 10,0 | 4,0 | 4,0 | 6,7 | 4 | | TB-2-(31-8)-1,2 | 1,3 | 1,1 | 3,6 | 92 | 2,70 | 8,0 | 10,0 | 4,0 | 4,0 | 6,1 | 4 | | TB-2-(31-8)-1,0 | 1,6 | 1,3 | 3,6 | 91 | 2,25 | 8,0 | 10,0 | 4,0 | 4,0 | 5,7 | | | TB-2-(31-12)-1,5 | 1,0 | 1,1 | 3,7 | 93 | 3,60 | 8,0 | 10,0 | 4,0 | 6,0 | 6,7 | | | TB-2-(31-12)-1,2 | 1,2 | 1,4 | 3,7 | 92 | 2,85 | 8,0 | 10,0 | 4,0 | 6,0 | 6,1 | | To be continued on the page 22. | Turno | Imax, Qmax, Umax, ΔTmax, Rac, Dimensions, mm | | | Decign | | | | | | | | |---------------------|--|---------|---------|--------|-------|------|------|------|------|------|--------| | Type | (Amps) | (Watts) | (Volts) | (K) | (Ohm) | Α | В | A1 | B1 | Н | Design | | TB-2-(31-12)-1,0 | 1,4 | 1,6 | 3,7 | 91 | 2,40 | 8,0 | 10,0 | 4,0 | 6,0 | 5,7 | 4 | | TB-2-(59-18)-1,5 | 1,1 | 1,8 | 7,1 | 94 | 6,70 | 12,0 | 12,0 | 6,0 | 6,0 | 6,7 | | | TB-2-(59-18)-1,2 | 1,3 | 2,2 | 7,1 | 93 | 5,30 | 12,0 | 12,0 | 6,0 | 6,0 | 6,1 | 2 | | TB-2-(59-18)-1,0 | 1,5 | 2,6 | 7,0 | 92 | 4,35 | 12,0 | 12,0 | 6,0 | 6,0 | 5,7 | | | TB-2-(127-127)-1,3 | 2,8 | 16,1 | 15,4 | 83 | 4,70 | 30,0 | 30,0 | 30,0 | 30,0 | 8,8 | | | TB-2-(127-127)-1,15 | 5,8 | 34,0 | 15,4 | 84 | 2,30 | 40,0 | 40,0 | 40,0 | 40,0 | 8,5 | | | TB-2-(127-127)-1,15 | 8,8 | 31,0 | 8,9 | 87 | 1,05 | 40,0 | 40.0 | 40.0 | 40,0 | 7,5 | 1 | | (BULLFINCH) | 0,0 | 0,1 د | 0,9 | 67 | 1,03 | 40,0 | 40,0 | 40,0 | 40,0 | د, ۱ | | | TB-2-(199-199)-0,8 | 10,2 | 95,0 | 24,0 | 84 | 2,30 | 40,0 | 40,0 | 40,0 | 40,0 | 6,8 | | ## Three stage TECs | Three stage thermoelectric coolers | | | | | | | | | | | | |------------------------------------|--------|---|---------|-----|-------|------|--------|-----|------|------|--------| | Typo | lmax, | x, Qmax, Umax, ΔTmax, Rac, Dimensions, mm | | | | | Design | | | | | | Туре | (Amps) | (Watts) | (Volts) | (K) | (Ohm) | Α | В | A1 | B1 | Н | Design | | TB-3-(31-11-4)-1,5 | 0,9 | 0,4 | 3,5 | 109 | 5,40 | 8,0 | 10,0 | 2,0 | 4,0 | 9,3 | | | TB-3-(31-11-4)-1,2 | 1,1 | 0,5 | 3,5 | 108 | 4,30 | 8,0 | 10,0 | 2,0 | 4,0 | 8,4 | 3 | | TB-3-(31-11-4)-1,0 | 1,3 | 0,6 | 3,5 | 107 | 3,60 | 8,0 | 10,0 | 2,0 | 4,0 | 7,8 | | | TB-3-(49-17-4)-2,5 | 6,3 | 3,3 | 5,3 | 113 | 0.9 | 36,0 | 36,0 | 8,0 | 14,0 | 16,0 | | | TB-3-(59-17-4)-1,5 | 1,0 | 0,5 | 6,8 | 114 | 7,20 | 12,0 | 12,0 | 2,0 | 4,0 | 9,3 | | | TB-3-(59-17-4)-1,2 | 1,2 | 0,6 | 6,8 | 113 | 5,80 | 12,0 | 12,0 | 2,0 | 4,0 | 8,4 | 1 | | TB-3-(59-17-4)-1,0 | 1,4 | 0,7 | 6,8 | 112 | 4,80 | 12,0 | 12,0 | 2,0 | 4,0 | 7,8 | | | TB-3-(83-18-4)-1,3 | 3,7 | 2,5 | 10,0 | 118 | 2,35 | 24,0 | 20,6 | 8,7 | 4,5 | 10,8 | 2 | ### Four stage TECs | Four stage thermoelectric coolers | | | | | | | | | | | | |-----------------------------------|---|---------|---------|-----|-------|------|------|--------|------|------|--------| | Typo | Type Imax, Qmax, Umax, ΔTmax, Rac, Dimensions, mm | | | | | | | Design | | | | | Type | (Amps) | (Watts) | (Volts) | (K) | (Ohm) | Α | В | A1 | B1 | Н | Design | | TB-4-(59-31-11-4)-1,5 | 0,8 | 0,4 | 6,9 | 118 | 8,90 | 12,0 | 12,0 | 2,0 | 4,0 | 12,2 | | | TB-4-(59-31-11-4)-1,2 | 1,0 | 0,5 | 6,9 | 117 | 7,15 | 12,0 | 12,0 | 2,0 | 4,0 | 11,0 | 1 | | TB-4-(59-31-11-4)-1,0 | 1,1 | 0,6 | 6,9 | 116 | 5,95 | 12,0 | 12,0 | 2,0 | 4,0 | 10,2 | | | TB-4-(83-18-4-1)-1,3 | 3,7 | 0,8 | 10,0 | 138 | 2,37 | 24,0 | 20,6 | 4,5 | 2,4 | 13,6 | 2 | | TB-4-(127-71-31-17)-1,65 | 6,8 | 14,8 | 14,1 | 107 | 2,05 | 48,0 | 48,0 | 22,0 | 22,0 | 15,0 | 1 | | TB-4-(199-97-49-17)-1,5 | 6,7 | 16,9 | 23,6 | 111 | 3,45 | 62,0 | 62,0 | 20,0 | 20,0 | 14,5 | 1 | | Standard and additional options for single-stage miniature coolers | | | | | | | | | | |---|-------------------------------------|--|--|--|--|--|--|--|--| | Description | Notation (*) | Note | | | | | | | | | Substrates material | | | | | | | | | | | Alumina Al ₂ O ₃ (BK-96) | - | Standard performance | | | | | | | | | Aluminium nitride (AIN) | N | Heat conductivity
> 180 W/m∙K | | | | | | | | | | Operating and mounting temperatures | | | | | | | | | | Operating temperature up to 120 °C (standard), max Mounting temperature \leq 130 °C** | HT(120) | Standard performance.
Melting point of TEC's solder T=139°C | | | | | | | | | Operating temperature up to 150 °C, max Mounting temperature \leq 170 °C** | HT(150)*** | Melting point of TEC's
solder T=183°C (Pb-Sn)*** | | | | | | | | | Parallelism and flatness of mounting surfaces | | | | | | | | | | |---|--|---|--|--|--|--|--|--|--| | Flatness 0,1 mm;
Parallelism 0,15 mm | L4 | Standard performance.
Height tolerance \pm 0,35 mm | | | | | | | | | Flatness 0,02 mm;
Parallelism 0,03 mm | L1**** | Height tolerance ± 0,05mm | | | | | | | | | Flatness 0,015 mm;
Parallelism 0,02 mm | L2**** | Height tolerance ± 0,025mm | | | | | | | | | | Metallization of cold and (or) hot sides | | | | | | | | | | Metallization of cold (mc) and (or) hot side of TEC with solder tinning | mc95, mh95,
mm117 etc. | Melting temperatures 95 °C, 117 °C, 139 °C or 183 °C | | | | | | | | | Gold plating | mcAu, mhAu, mmAu | 0,2-1 micron thickness | | | | | | | | | Nickel plating | mcNi, mhNi, mmNi | | | | | | | | | | | Other standard and additional options | | | | | | | | | | Sealants: epoxy, silicon, urethane, conformal coating | Сс | | | | | | | | | | Tolerance of Rac value | | ± 15% | | | | | | | | | Tolerance of length (dimensions A, A1) and width (dimensions B, B1) | | +0,5/–0,2mm | | | | | | | | | Tolerance of height | | ±0,35mm (standart performance) | | | | | | | | | Type and length of lead wires (standard length 120 mm) | - | | | | | | | | | | Connectors attachment | - | Up to customer's requirements | | | | | | | | | TEC could be mounted on heatsink, cold block or into the electronic devices enclosure | - | op to customer s requirements | | | | | | | | (*) – the notations shown are used to notate additional options in the cooler name (please refer to System of Notation below); (**) - the maximum mounting temperature influence on the TEC must not exceed 2 minutes; (***) – attention! This option does not meet ROHS requirements; (****) - to be agreed. ### **System of notation:** A universal abbreviation is used to notate multistage TECs: TB-n-(N1-N2-N3-N4)-h, where: **TB** — product abbreviation — thermoelectric battery (TEC); ${\bf n}$ — number of stages in the TEC; **N** — number of thermocouples in the TEC: (N1-N2) is used for two stage TECs; (N1-N2-N3) — for three stage TECs; (N1-N2-N3-N4) — for four stage TECs; **h** — height of the thermoelectric element of the bottom stage (in millimeters). For example: TB-2-(11-4)-1,0 HT (200) mmAu N denotes a two-stage thermoelectric cooler with max operating temperature 200°C, that consists of 11 thermocouples (22 thermoelectric elements) in the base stage and 4 thermocouples in the second stage, every element has the cross-section of 1x1 mm. The TEC is made on a aluminium nitride substrate. Cold and hot sides are metallized with golden coating. #### **Enviroment safety features:** The thermoelectric coolers do not contain lead or any other forbidden materials according to RoHS directive requirements.