

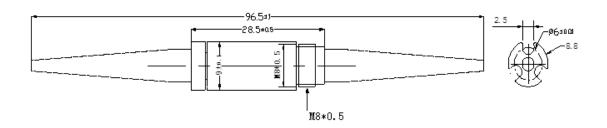
Fiber Optic Rotary Joint

Description

The fiber optic rotary joint (FORJ) is characterized with low insertion loss, high stabilization, high return loss, excellent environmental stability and reliability. It is working for connect the optical signal with rotary objects continuously, and ideal for radar system and medical apparatus and instruments.

Applications

- * Rada system
- * medical apparatus
- * Fiber Sensor

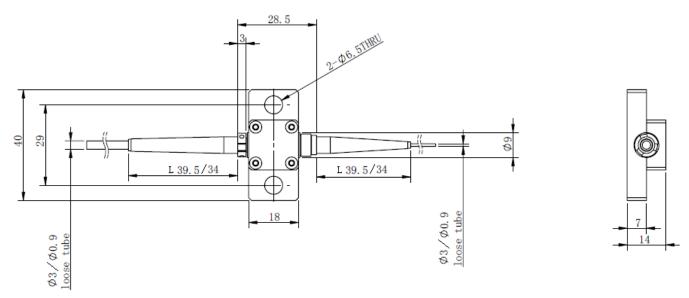

Specifications

Type Parameter	SM	MM
Operating wavelength(nm)	1310 \ 1550 or customized	
Bandwidth (nm)	± 30	
Max. insertion loss at 23 ℃ (dB)	≤1.5	≤1.0
insertion loss ripple (dB)	±0.35	± 0.25
Return loss (dB)	≥45	≥35
Fiber type (can be customized)	SMF-28e	62.5/125、50/125
Input max. power handling (W)	0.5 or 10	
Startup torque(Nm)	≤0.01	
Dimensions (OD x L mm)	φ9×28.5	
Operating temperature(°C)	-40 ~ +85	
Storage temperature(°C)	-40 ~ +85	

^{*}The Above specifications is without connector,

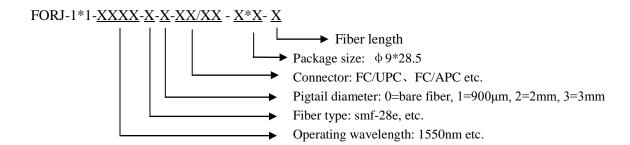
Mechanical Dimensions (Unit: mm)

Without plate:



^{*}IL is 0.3dB higher; RL is 5dB lower for each connector added.

^{*} Dimensions without plate



With plate:

**For $\, \Phi \, 3mm$ loose tube , L=39.5mm; For $\, \Phi \, 0.9mm$ loose tube , L=34mm;

Ordering Information

