



# MNx Ultra-Compact Microchip Series



## **KEY FEATURES**

- Ultra-compact package
- 1535 nm, 1064 nm and 532 nm
- Ultra-short pulses down to 650 ps
- Multi-kW peak power
- Excellent beam quality TEM00, M<sup>2</sup><1.1</li>
- · Efficient, air-cooled

The MNx series are our most compact microchip lasers and cover the mid-IR to visible part of the spectrum. They integrate the pump diode, the micro-cavity and even the second harmonic generation crystal in a package less than 7 cm long. The 1064nm engine produces sub-nanosecond pulses with several kW peak power, achieving over 50% second harmonic generation efficiency at 532 nm. The 153 5nm micro-laser displays similar performances with a few nanoseconds pulse duration.

## **APPLICATIONS**

- Super-continuum generation
- Marking
- Raman spectrometry
- Rangin



## **TECHNICAL SPECIFICATIONS**

|                                                     | MNE-06E-100                | MNP-08E-100            | MNG-03E-100           |
|-----------------------------------------------------|----------------------------|------------------------|-----------------------|
| Wavelength                                          | 1535nm                     | 1064nm                 | 532nm                 |
| Repetition Rate                                     | >2kHz                      | >5kHz                  | >5kHz                 |
| Constant Pulse width range<br>(FWHM) <sup>(1)</sup> | <3.5ns                     | <1ns                   | <0.75ns               |
| Output power <sup>(2)</sup>                         | >12mW                      | >40mW                  | >15mW                 |
| Output energy                                       | >6µJ                       | >8µJ                   | >3µJ                  |
| Peak Power                                          | >1.5kW                     | >8kW                   | >4kW                  |
| Short term (1min) power<br>stability <sup>(3)</sup> | <±1%                       | <±1%                   | <±1%                  |
| Long term (6 hrs) power<br>stability <sup>(3)</sup> | <±5%                       | <±3%                   | <±3%                  |
| Beam profile Full angle divergence                  | Gaussian TEM00             | Gaussian TEM00         | Gaussian TEM00        |
| Horizontal@1/e²<br>Vertical@1/e²                    | 23±3.4 mrad<br>23±3.6 mrad | 12±2 mrad<br>14±2 mrad | 10±2 mrad<br>9±2 mrad |
| M <sup>2(4)</sup>                                   | <1.3                       | <1.3                   | <1.3                  |
| Beam ellipticity <sup>(5)</sup>                     | <1.2                       | <1.3                   | <1.3                  |
| Polarization                                        | Linear<br>PER>20dB         | Linear<br>PER>20dB     | Linear<br>PER>20dB    |
| Package dimensions                                  | 100x22x32mm                | 68x41x29mm             | 68x41x29mm            |
| Package weight                                      | 250g                       | 250g                   | 250g                  |
| Options (table p3)                                  | -                          | M                      | -                     |

#### NOTES

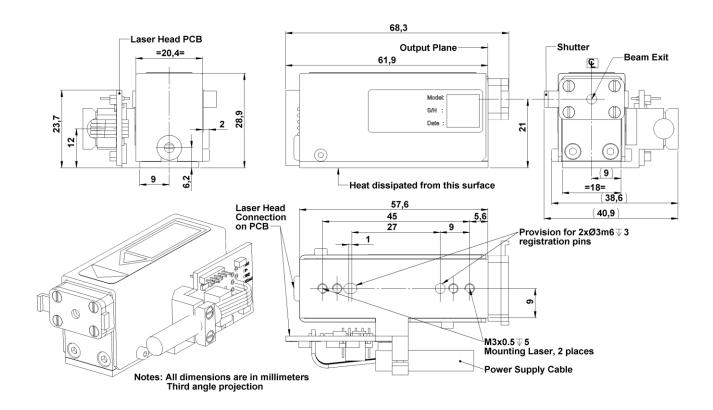
 <sup>(1)</sup> Measured with 1Ghz photodiode and 1GHz/10GS/s oscilloscope.
 (2) Measurement performed with an OPHIR thermal power sensor (OPHIR 3A-FS-SH).
 (3) For temperature variation < ± 3°C and < 3°C/hour, stability is measured with calorimeter - detector band [DC, 2Hz]</li>
 (4) Mean average value M = √(XY), X and Y being respectively the major and minor axis of the ellipse
 (5) Beam ellipticity is calculated as the ratio of the main axis far field divergence

#### FOR YOUR APPLICATION, FIND YOUR PULSED LASER SOLUTION



# **COMPLEMENTARY INFORMATION & OPTIONS**

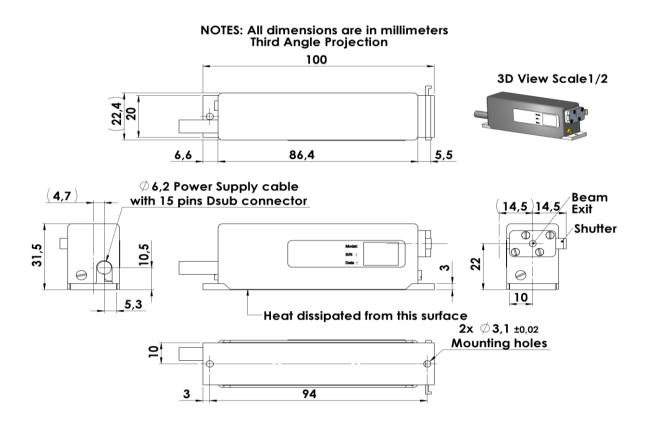
| Environment Parameters                                    |        |  |  |  |
|-----------------------------------------------------------|--------|--|--|--|
| Operating Temperature Range                               | 0-50°C |  |  |  |
| Maximum Laser Head Baseplate Temperature                  | <50°C  |  |  |  |
| Maximum Power Consumption                                 | <40W   |  |  |  |
| Laser Head Thermal Dissipation                            | <10W   |  |  |  |
| Storage Temperature                                       | 0-50°C |  |  |  |
| Shock of 11ms according to IEC 68-2-27, non operating     | 25g    |  |  |  |
| Vibration 5Hz to 500Hz sinusoïdal according to IEC 68-2-6 | 2g     |  |  |  |


| Certification                                      |                                          |  |  |  |  |
|----------------------------------------------------|------------------------------------------|--|--|--|--|
| Laser classification according to IEC 60825-1:2007 | 3R for MNE-06E<br>3B MNP-08E and MNG-03E |  |  |  |  |
| CDRH                                               | Yes, if used with a -DR1 controller      |  |  |  |  |
| ROHs                                               | Yes                                      |  |  |  |  |

| Options                |                                  |
|------------------------|----------------------------------|
| Multimode fibering (M) | Contact factory for availability |

| Available Controller Types |         |              |      |  |  |
|----------------------------|---------|--------------|------|--|--|
| Model                      | Туре    | Input Power  | CDRH |  |  |
| MLC-03A-DR1                | Desktop | 100-240 V AC | Yes  |  |  |
| MLC-03A-MR1                | Module  | 12 V DC      | No   |  |  |
| MLC-03A-BR1                | Board   | 12 V DC      | No   |  |  |




# CDRH LASER HEAD MECHANICAL DRAWINGS: MNP-08E-100, MNG-03E-100







# CDRH LASER HEAD MECHANICAL DRAWINGS: MNE-06E-100

