

ANx PicoOne Laser Series

KEY FEATURES

- 1064nm, 532nm, 355nm* and 266nm*
- Ultra-short pulses, down to 650ps@100kHz
- Peak power >38kW at 1064nm
- Excellent beam quality TEM00, M²<1.2
- Efficient, air-cooled
- Sealed package, long life
- * Refer to Factory for Detailed Performance

The PicoOne amplified laser series is based on a microchip seeder and an efficient MOFA (Master Oscillator Fiber Amplifier) amplification stage, this laser produces 650 ps pulses at frequencies in excess of 100 kHz with an average power reaching 1W at 532nm. The laser operates with a single emission frequency.

The Passively Q-Switched (PQS) microchip laser technology and fiber amplification brought together with this laser series offers a full control over the pulse energy (or peak power) while leaving unchanged the pulse width and pulse shape. Other seeders may also be used if different characteristics are required.

APPLICATIONS

- Micromachining

 Selective ablation of µm to nm scale layers
 DOB Depair
 - PCB Repair

- Instrumentation
- Raman spectroscopy
 - Supercontinuum generation
 - Ranging
 - LIDAR

Biophotonics
Dense tissue ablation

TECHNICAL SPECIFICATIONS

	ANP-20E-000	ANG-10E-000
Wavelength	1064 nm	532 nm
Repetition Rate	>70 kHz ⁽⁶⁾	>70 kHz ⁽⁶⁾
Constant Pulse width range (FWHM)	<0.65 ns	<0.65 ns
Output power ⁽²⁾	>1750 mW	>700 mW
Output energy	>25µJ ⁽⁷⁾	>10µJ ⁽⁸⁾
Peak Power	>38kW	>15kW
Short term(10min) power stability ⁽³⁾	<±2% rms	<±2% rms
Long term (6 hrs) power stability ⁽³⁾	<±3% rms	<±3% rms
Beam profile	Gaussian TEM00	Gaussian TEM00
Full angle divergence @1/e ²		
Horizontal Vertical	2.7 mrad 3.1 mrad	5.6 mrad 4.8 mrad
M ²⁽⁴⁾	<1.2	<1.2
Beam ellipticity ⁽⁵⁾	<1.30	<1.5
Polarization	Linear PER>20dB	Linear PER>20dB
Energy control function	RS232, Analog 0- 5V	RS232, Analog 0- 5V
Gating function	TTL 0-5V	TTL 0-5V
Options*	S, I	S

NOTES

(1) Measured with 25Ghz photodiode and 6GHz oscilloscope.

(2) Measurement performed with an OPHIR thermal power sensor (OPHIR 3A-FS-SH)

(3) For temperature variation < ± 3°C and < 3°C/hour, stability is measured with calorimeter - detector band [DC, 2Hz]

(4) Mean average value M = $\sqrt{(XY)}$, X and Y being respectively the major and minor axis of the ellipse

(5) Beam ellipticity is calculated as the ratio of the main axis far field divergence

(6) The repetition rate can be factory-set to any fixed higher (up to 100 kHz) or lower (down to 30 kHz) value. The energy per pulse would decrease / increase accordingly.

(7) The energy per pulse of the ANP-20E-000 can be factory-set up to 30µJ, the repetition rate would have to be decreased

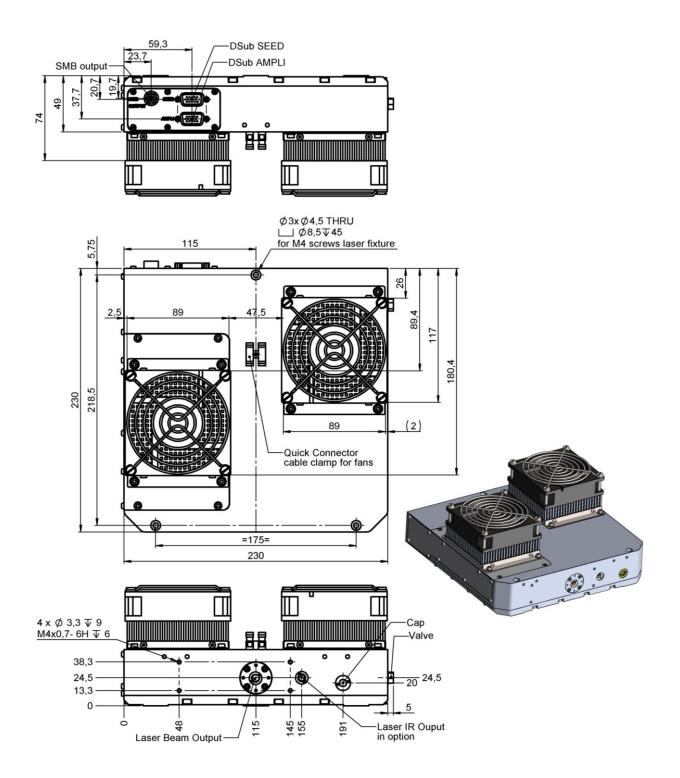
(8) The energy per pulse of the ANG-10E-000 can be factory-set up to $15\mu J$, the repetition rate would have to be decreased

*Described on page 3

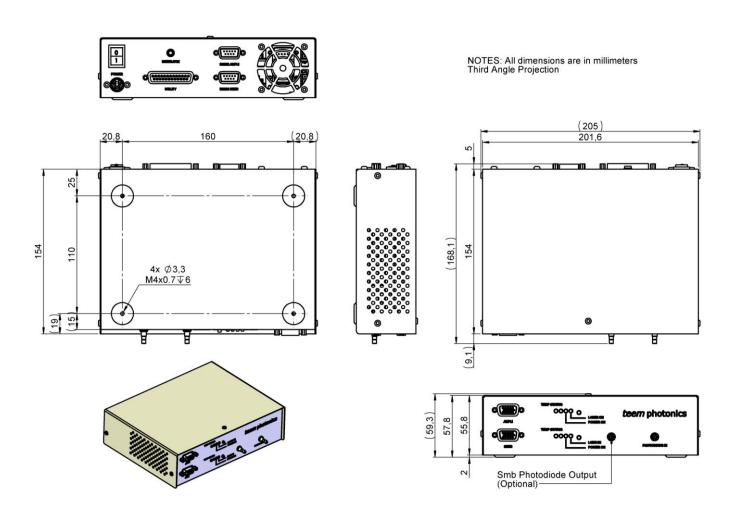
SUPPLEMENTAL INFORMATION & OPTIONS

Environment Parameters		
Operating Temperature Range	15-30°C	
Maximum Power Consumption	<25W	
Storage Temperature	0-50°C	
Shock of 11ms according to IEC 68-2-27, non operating	25g	
Vibration 5Hz to 500Hz sinusoïdal according to IEC 68-2-6	2g	

Certification		
Laser classification according to IEC 60825-1:2007	4	
CDRH compliance	In Process	
RoHs	Yes	


Package		
Laser Head dimensions, LxWxH ⁽⁷⁾	230x230x105mm	
Laser Head weight	4.5 kgs	
Cable length between head and controller	2 m	
Controller dimensions, LxWxH	160x154x59.3mm	
Controller weight	1.1 kgs	

Options		
Synchronization output (S)	TTL compatible output signal for synchronization/monitoring	
Optical Isolator option (I)	1064 nm return signal optical isolator added inside the laser head	


LASER HEAD MECHANICAL DRAWINGS

FOR YOUR APPLICATION, FIND YOUR PULSED LASER SOLUTION

CONTROLLER MECHANICAL DRAWINGS

