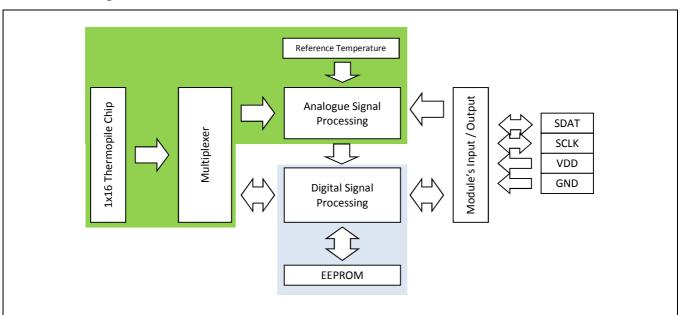


Thermopile Linear Array Module

TPiL 16T 3546 L3.9 A60 P8 (Part Number: 9638 4323)


Revision 4 - Date: 2016/06/02

Product Description

The TPiL 16T 3546 L3.9 A60 P8 consists of a 1x16 element thermopile chip connected to a multiplexer, with analogue and digital circuits for integrated signal processing and interfacing. The sensor module provides an output signal which represents real temperature data for each pixel. It has a lens optic to meet the Field of View (FOV) requirements of the specific application. This module is supplied as 'A' version which is calibrated and includes fast internal temperature compensation for ambient error correction.

Functional Diagram

Absolute Maximum Ratings

PARAMETERS	MIN	MAX
Storage Temperature	- 40°C	100°C
Operating Temperature	- 25°C	100°C

Electrical Characteristics

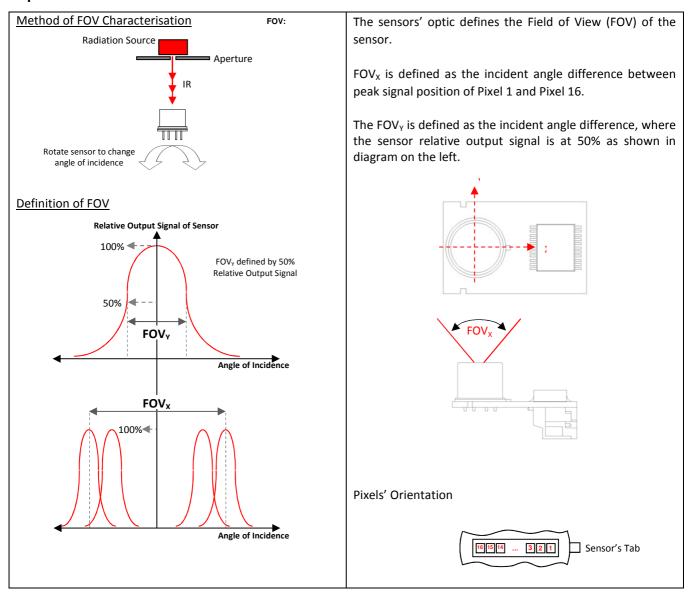
Unless otherwise indicated, all limits are specified for T_{AMB} at 25 $^{\circ}$ C, V_{DD} at 5V.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS		
POWER SUPPLY								
V _{DD}	Supply Voltage	4.5	5.0	5.5	V	-		
I _{DD}	Supply Current	-	5.0	6.5	mA	-		
SERIAL IN	TERFACE (SDAT & SCLK)							
V _{iL}	Low level input voltage	-	-	0.8	V	Fall edge		
V _{iH}	High level input voltage	0.8 * V _{DD}	-	V _{DD} + 0.3	V	Rising edge		
V _{oL}	Low level output voltage NOTE 1	-	-	0.4	V	-		

NOTE 1: SDAT and SCLK pins have drain output.

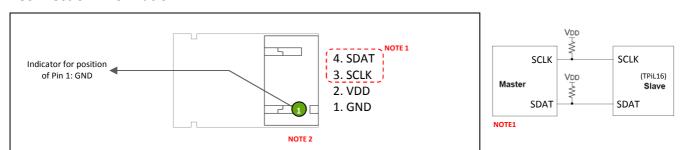
Temperature Sensing Range

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS		
CALIBRATION SETTINGS								
Т _{ОВЈ}	Calibrated object temperature range	-20.0	-	60.0	°C	Emissivity at 99.9%		
RESOLUTION _{TOBJ}	Resolution of object temperature	0.5	-	1	°C	-		
T _{AMB}	Calibrated ambient temperature range	-25.0	-	70.0	°C	-		
RESOLUTION _{TAMB}	Resolution of ambient temperature	0.5	-	-	°C	-		


AC Characteristics

Unless otherwise indicated, all limits are specified for T_{AMB} at 25 $^{\circ}$ C, V_{DD} at 5V.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS			
t _{start}	Module time to response after power ON	-	-	500	ms	-			
t _{latency}	Latency time for T _{OBJ}	-	-	300	ms	No filter applied			
t _{pix_refresh}	Pixel signal refresh time	-	250	300	ms	-			
t _{ptat_refresh}	PTAT signal refresh time	-	250	300	ms	-			
	AMPLIFIER								
O _N	Output noise	-	5	-	mV _{pp}	Applicable for V _{Pix_i} At default filter setting			
		SERIAL INTE	RFACE						
f _{SMB}	f _{SMB} Operating frequency		-	100	kHz	Please refer to page #6 for specific conditions applicable			
	EEPROM								
	Data retention time	10	-	-	Years	Max T _{AMB} at 85°C			
t _{wr}	Write cycle time	320	-	-	ms	-			


Optical Characteristics

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS			
CAP TYPE TO39 L3.9									
FOV _X	Field of View X Direction		70		۰	Please refer to			
FOV _Y	Field of View Y Direction		4		0	Definition of FOV above			
OA	Optical Axis	- 6.5	0	6.5	0	-			
LENS TRANSMISSION									
Average Transmission		-	52	-	%	Wavelength from 5.5μm to 13.5μm			

Connection Information

NOTE 1: The SCLK and SDAT pins are open collector. Apply appropriate pull up resistors (e.g. 4.7 kOhm) on the SMBus master device.

NOTE 2: Module connector employed: CVILUX CI0104M1HR0-LF or JST S4B-PH; or equivalent.

Serial Interface: SMBus & Data Communication Information

A '2-wire', bi-directional SMBus compatible serial interface is provided for communication of sensors' data to and from target applications.

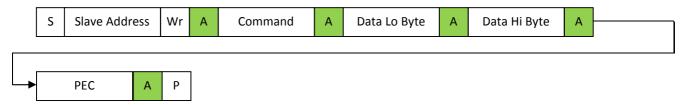
TPIL 16T Application Note: SMBus Communication, provides examples to understand and to operate the SMBus communication protocol. For complete SMBus specification, please refer to the following webpage: www.smbus.org.specs

There are 2 types of memory in the TPiL 16T device:

- 1. EEPROM holds configuration data
- 2. RAM holds temperature data.

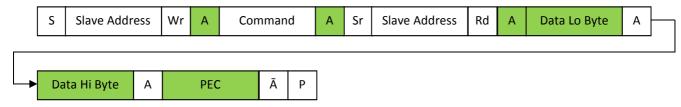
Only READ operation is applicable to RAM data; READ / WRITE operations are applicable to EEPROM data.

The following sub-sections specify the SMBus protocol required to: (1) WRITE Word, and (2) READ Word; according to legend provided here.

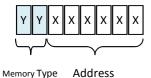

- S SMBus START Condition
- Sr SMBus Repeated START Condition
- Rd READ (bit value 1)
- Wr WRITE (bit value 0)
- A ACKNOWLEDGE (ACK)
- Ā NOT ACKNOWLEDGE (NACK)
- P SMBus STOP Condition

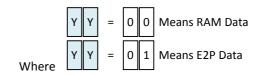
PEC Packet Error Code (CRC: Cyclic Redundancy Check) please see below

Data Direction: MASTER send to SLAVE


Data Direction: SLAVE send to MASTER

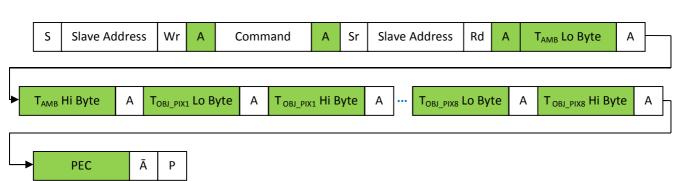
SMBus Protocol: WRITE Word




SMBus Protocol: READ Word

COMMAND

COMMAND is a byte used by the MASTER device to tell the TPiL 16T what data it required. The COMMAND has the following format:


COMMAND	DESCRIPTIONS
00 XXXXXX _{bin}	Read RAM, XXXXXXX = 6 LSBits of address of RAM cell to be read
01 XXXXXX _{bin}	Read/Write EEPROM, , XXXXXXX = 6 LSBits of address of E2P cell to be read/written

NOTE: Addresses of RAM & EEPROM are described in the sections: OUTPUT DATA INFORMATION and CONFIGURATION PARAMETERS & DESCRIPTIONS

SMBus Protocol: BLOCK READ

In addition to the above READ Word, a BLOCK READ protocol can be activated in order to output in one sequence the data refreshed from RAM Addresses 18 to 34 (T_{AMB} , T_{OBJ_PIX1} , T_{OBJ_PIX2} ... T_{OBJ_PIX16}) by providing a single COMMAND byte ,11xxxxxxx_{bin}'.

Where Y Y = 1 1 Means RAM (Block) Data

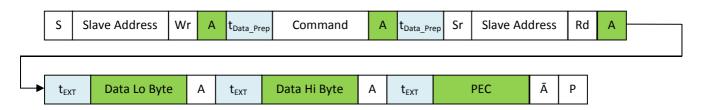
COMMAND	DESCRIPTIONS
11 XXXXXX bin	Block Read RAM, from Address 18 (T_{AMB}) to Address 34 (T_{OBJ_PIX8})

NOTE: Block Read is activated by default!

PEC: CYCLIC REDUNDANCY CHECK

Each bus transaction requires a Packet Error Code (PEC) calculation by both the MASTER and the SLAVE devices to ensure physical correctness of transmitted data. The PEC includes all bits of a transaction except the START, REPEATED START, STOP, ACK, and NACK bits.

The PEC employed by TPiL 16T is a CRC-8 with polynomial PEC = x8+x2+x1+1 = 107hex and must be calculated in the order of the bits as received.


CLOCK LOW EXTENSION & DATA PREPARATION TIME

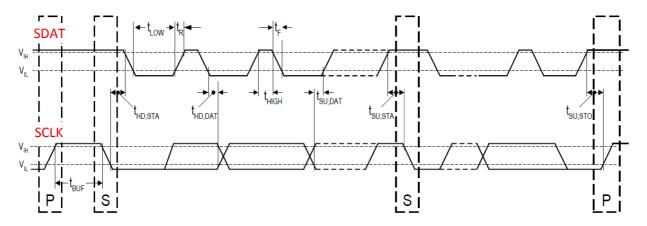
The TPiL 16T uses clock low extension, t_{EXT} where necessary in order to extend the low period of SCLK in order to gain time for data processing, or data preparation for transmission.

For this reason, there are also minimum timing conditions represented by data preparation time, t_{Data_Prep} required to ensure reliable SMBus communication with the TPiL 16T.

The diagram below shows the READ Word command as an example. In order to ensure stable SMBus communication, the MASTER Device is required to apply $t_{Data\ Prep}$ at the various positions as indicated.

NOTE: text is generated automatically by TPiL 16T, therefore Master Device do not need to apply time delay for these.

The following table provides the required settings for t_{EXT} and $t_{Data\ Prep}$ at specified SCLK frequency's:


SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS
t _{EXT}	SCLK signal clock low extension	-	ı	100	μs	-
	Time delay required by Master	120	-	-		SCLK Frequency = 80kHz
t _{Data_Prep}	Device during data preparation	45	1	-	μs	SCLK Frequency = 50kHz

SMBus Timeout

TPiL 16T provides a Time-out mechanism for SMBus communication self recovery in the event that the SMBus protocol sequence is interrupted or disturbed. Every time a new SMBus transaction is recognized by a Slave Address match, a timer is activated. If the subsequent SMBus protocol events do not occur within a span of 30ms, a Timeout occurs and as a reaction the SMBus communication sequence will be reset to be ready for a new transaction.

SMBus Signals: Timing Characteristics

Unless otherwise indicated, all limits are specified for T_{AMB} at 25 $^{\circ}$ C, V_{DD} at 5V.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS
t _{BUF}	Bus free time between STOP and START condition.	10	-	-	μs	-
t _{HD:STA}	Hold time after (Repeated) START Condition. After this period, the first clock is generated.	4.0	-	-	μs	-
t _{su:sta}	Repeated START Condition setup time.	4.7	-	-	μs	-
t _{su:sto}	STOP Condition setup time		-	-	μs	-
t _{HD:DAT}	Data hold time	300	-	-	ns	-
t _{su:DAT}	Data setup time		-	-	ns	-
t _{Low}	Clock low period	4.7	-	30000	μs	NOTE 1
t _{HIGH}	Clock high period	4.7	-	50	μs	NOTE 1
t _F	Clock / Data fall time	-	-	300	ns	-
t _R	Clock / Data rise time	-	-	1000	ns	-

NOTE 1: Refer to SMBus Timeout.

Output Data Information

Temperature outputs of the TPiL 16T are updated into the RAM memory. The address(s) of the RAM Data are defined by the following Table:

RAM ADDRESS	ВІТ	DATA	DESCRIPTION OF DATA	Value Range
0	15 0	VPIX ₀	Amplified Pixel Voltage of dummy Pixel 0: Value = 10000 * VPIX ₀ [in V]	0 50000
1 16 ^{NOTE 1}	15 0	VPIX _[1 16]	Amplified Pixel Voltage of corresponding Pixel i: VPIXi [in V] = $k*(T_{OBJ}^4 - T_{AMB}^4)$ Value _i = 10000 * VPIX _i [in V]	0 50000
17	15 0	V_{PTAT}	Amplified PTAT Voltage Value = 10000 * V _{PTAT} [in V]	0 50000
18	15 0	T _{AMB}	Calculated Ambient Temperature: Value = 10 * T _{AMB} [in °C]	0 65535
19 34 ^{NOTE 1}	15 0	Т _{ОВЈ}	Calculated Object Temperature (T _{AMB} Compensated): Value = 10 * T _{OBJ} [in °C]	0 65535

NOTE: The data of RAM ADDRESS 0 to 17 is used for factory calibration only and not relevant for customer application.

NOTE 1: Negative temperature output are represented as follows, eg. $-5^{\circ}C \rightarrow 65535 - 50 = 65485$.

T /°C	T _{OBJ} Output (RAM ADDRESS 19 34) / Value						
T _{OBJ} / °C	MIN	TYP	MAX				
0.0	65510	0	25				
5.0	25	50	75				
10.0	75	100	125				
15.0	125	150	175				
20.0	175	200	225				
25.0	225	250	275				
30.0	275	300	325				
35.0	325	350	375				
40.0	385	400	415				
45.0	425	450	475				
50.0	475	500	525				
55.0	525	550	575				
60.0	575	600	625				

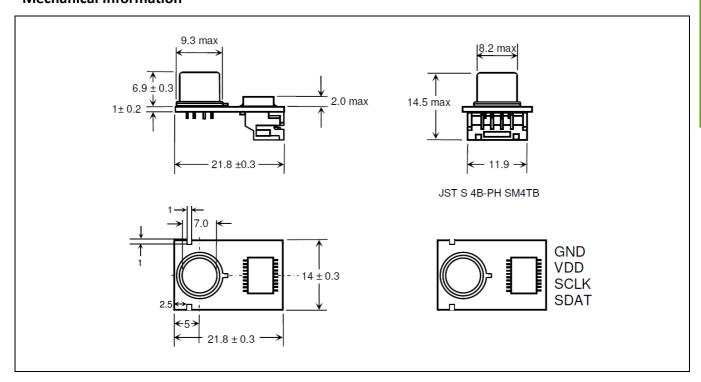
NOTE: Accuracy for TOBI between 25°C and 60°C are measured in Excelitas Lab. For TOBI below 25°C, accuracy is estimated.

Configuration Parameters & Descriptions

The address(s) of customer accessible EEPROM Data are defined by the following Table:

EEPROM Address	Bits	Name	Meaning	Mode	Value Range
35	6 0	0 SA Unique SMBus Slave Address		R/W	0 127 (Default = 0A _{Hex})
33	7	-	Not used	-	0
38	7 0	F	Filter Mode: 0 = Filter disabled 2 = Filter enabled	R/W	0 2 (Default = 2)
39	7 0	WEIGHT_PIX	Filter Strength (1% 99%) applied to T _{OBJ} signals. Value: 1% - Very strong filter 99% - Very weak filter	R/W	1 99 (Default = 20%)
40	7 0	WEIGHT_PTAT	Filter Strength (1% 99%) applied to T _{AMB} signals. Value: 1% - Very strong filter 99% - Very weak filter	R/W	1 99 (Default = 5%)
42	9 0	E	Emissivity Factor Value = 10* Emissivity Factor in %	R/W	0 1000 (Default = 100%)
62, 63	15 0	ID ^{NOTE 1}	Unique Sensor ID identical to corresponding sticker label applied on module	R/W	0 2 ¹⁶

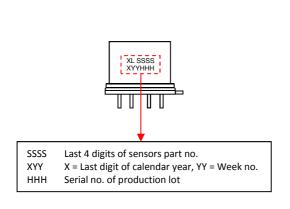
NOTE: Configuration and Calibration changes are scalable. Other EEPROM addresses are locked from changes. Default settings may be optimised and changed in order to fit specific application requirements.

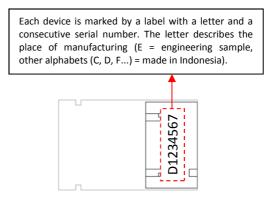

 $\underline{\textbf{NOTE 1}} : \mathsf{ID}$ may not apply for engineering samples.

EEPROM Writing

EEPROM Writing is performed asynchronously to SMBus communication. The write cycle time t_{WR} is the time from a valid STOP condition of a WRITE WORD command sequence to the end of physical transfer of received data into EEPROM cell. Please refer to page 2 for specified value of t_{WR} .

Mechanical Information


Soldering


The TPiL 16T is a lead-free component and fully complies with the RoHS regulations, especially with existing roadmaps of lead-free soldering.

NOTE: This may not apply for engineering samples.

Labelling

For manufacturing traceability, each sensor and module is labelled using the following format.

Quality System

Excelitas Technologies is an ISO 9001 certified manufacturer. All devices employing PCB assemblies are manufactured according to IPC-A-610 guidelines.

The PCB assembly and components are of lead-free type, compliant to RoHS.

Liability Policy

The contents of this document are subject to change without notice and customers should consult with Excelitas Technologies sales representatives before ordering. Customers considering the use of Excelitas Technologies thermopile devices in applications where failure may cause personal injury or property damage, or where extremely high levels of reliability are demanded, are requested to discuss their concerns with Excelitas Technologies sales representatives before such use. The Company's responsibility for damages will be limited to the repair or replacement of defective product. As with any semiconductor device, thermopile sensors or modules have a certain inherent rate of failure. To protect against injury, damage or loss from such failures, customers are advised to incorporate appropriate safety design measures into their product.

