

Description

FiberMax520 is a fiber-pigtailed visible green laser module delivering superior single mode performance and stability in a robust, ultra-compact package. The units are optically & thermally stable, reliable, and are ideal for demanding industrial environments and applications. The units are offered with Polarization Maintaining Single Mode or Single Mode fiber, 3mm PVC or metal jacket, or 0.9mm loose-tube jacketing. A range of collimator, wavelength, power level and optical connector options are available.

Optical and Electrical Characteristics

Item	Symbol	Unit	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Test Condition
Optical power	Po	mW	20	-	-	35	-	-	50	-	-	Tc=25°C
Threshold current	$I_{\scriptscriptstyle TH}$	mA	-	45	75	-	40	70	-	-	100	Tc=25°C
Operating current	I_{OP}	mA	-	150	160	-	200	240	-	-	350	Tc=25°C
Operating voltage	V_{OP}	V	-	7.0	8.0	-	6.4	8.0	4.2	-	6.0	Tc=25°C
Lasing wavelength	λ	nm	520	-	530	515	520	530	510	515	520	Tc=25°C
Monitor current	I_{MON}	mA	-	0.09	-	-	0.11	-	0.2	-	3.0	Tc=25°C
Electrical pin out				В			В			J		

Absolute Maximum Rating

Item	Symbol	Unit	Min	Max	Test Condition
Operating temperature	T_{OPR}	°C	-20/0*	+60	* 50mW LD only
Storage temperature	T_{STG}	°C	-40	+85	
LD reverse voltage	V _R (LD)	V	-	2/5*	Tc=25°C
Soldering Temperature	T_{Solder}	°C	-	260	10 second max

^{* = 50}mW Laser Diode only

Fiber Specs

Single mode fiber w/3mm PVC or metal jacket, or 0.9mm loose-tube

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.13	
Mode Field Diameter @ 515nm	MFD	um	3.0	3.5	4.0
Length	L	meter	-	1	-

Polarization maintaining fiber w/ 3mm PVC or metal jacket, or 0.9mm loose-tube

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.12	
Mode Field Diameter @ 515nm	MFD	um	2.8	3.3	3.8
Length	L	meter	-	1	-
Polarization Extinction Ratio	PER	dB	17	20	-

Note: Polarization and slow axis is aligned to the keyway on the connector.

The keyway is narrow Key for FC/APC connector.

Collimator Options (SM or PM)

Type	M	N	P	Q
Beam Diameter (1/e², mm, ±25%)	0.8	1.3	1.7	2.5
Divergence (mrad)	<1.2	<0.8	< 0.5	<0.4

FiberMax520 PART ORDERING TABLE

FMXL-520-020-Q-FCW

ZZZ = Power Out Q = Cable Type F = Connector C = Collimator W = Pin out XXX = Wavelength

020 = 20 mW035 = 35 mW

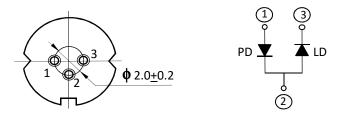
T = 900um / SMF520 = 520nm 050 = 50 mW0 = None0 = None

S = 3mm / SMFF = FC/PCM = 0.8 mm

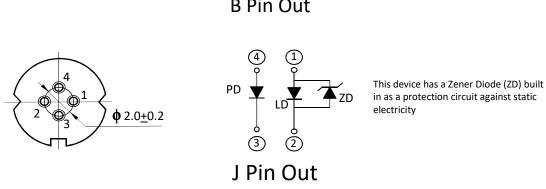
В M = 900um / PMFA = FC/APCExample: N = 1.3 mm

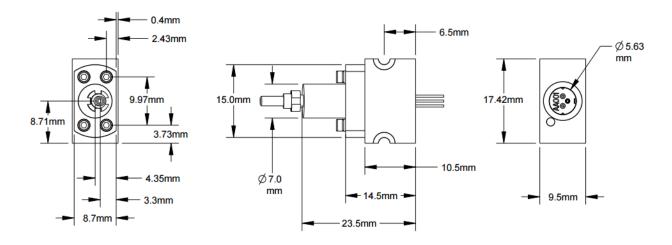
R = ferrule only FMXL-520-020-P-A0B P = 3mm / PMFP = 1.9 mm520 = 520 nm wavelength K = 3mm Armor/SMF Q = 3.2 mm

N = 3mm Armor PMF


020 = 20 mW output P = PM Fiber 3mm jacket

A = FC/APC connector


0 = no collimator B = B type pin out


Electrical Pin Out Configurations

B Pin Out

Mechanical Outline (dimensions in mm)

Blue Sky Research is able to manufacture additional wavelength FMXL's, and has the capability to use 3.8, 5.6 and/or 9.0 mm TO packages.

Handling Care and Precautions for Use of FiberMax™ Modules

1. Absolute Maximum Ratings

Do not exceed, even momentarily, the maximum ratings (see page 1, table). When a FiberMax module is driven in excess of it's maximum ratings, it can cause at minimum a considerable reduction in reliability, and potentially instantaneous failure.

- a. FiberMax modules may be damaged by surge currents generated at power on-off operation. Check on the transient characteristics of the power supply to make sure that such surges do not exceed the maximum ratings.
- b. The maximum ratings are specified for a case temperature of 25°C. Designs should be made to work well within this temperature range. As the case temperature goes up, power dissipation as well as maximum light output power is reduced.

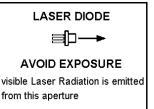
2. Soldering Conditions

Maximum solder-tip temperature is 260°C and soldering time must be within 3.0 seconds. (A minimum solder clearance of 1.6mm should be maintained from the root of the lead.

3. Prevention of Breakdown due to Static Electricity

FiberMax modules may be adversely affected by static electricity and surge currents and, consequently, cause breakdown of the module and reduction of reliability unless the following precautions are taken:

- a. Power supplies, installation and measuring equipment should be grounded.
- b. Anyone working with a FiberMax module should be grounded through high resistance (500 K Ohm 1M Ohm) by means of a ground strap and wrist band (for example).
- c. Soldering irons should be grounded to protect laser modules.
- d. During operation of the FiberMax module, working clothes, hats, and shoes should be static-protected.
- e. Any container for carriage and storage should be static-protected.
- f. Avoid using laser modules in an environment where high frequency surge currents may be generated by an inductive electric field (such as a fluorescent lamp). These fields can also cause breakdown or deterioration of the laser module.


4. Package Handling

- a. The laser module package should not be cut off, reworked, or deformed. Care should be taken when handling the fiber to avoid kinking it.
- b. Do not touch the optical connector end face. Any scratch or contamination may result in reduction of optical characteristics.
- c. Remove small contaminates on the optical connector end face surface carefully using a soft lint free wipe with a small amount of methyl alcohol.

5. Safety

The output light from laser modules is harmful to a human body even if it is invisible. Avoid looking at the output light of a FiberMax module directly, or even indirectly through a lens during operation. Refer to IEC 825-1 and 21 CFR 1040.10-1040.11 as a radiation safety standard for laser products.

Blue Sky Research is an ISO 9001:2008 certified company

Fiber Pigtailed 532nm Laser Module

Description

FiberMax532 is a fiber-pigtailed green laser module delivering superior performance for today's demanding electro-optic applications. Based on Blue Sky Research laser packaging technology, the FiberMax532 provides excellent coupling efficiency and stability in a cost effective package. The thermally stable design of the FiberMax532, based on our standard FiberMAX packaging technology, is a proven, stable package with many thousands of lasers operating in demanding applications. The units are offered with Multimode, Polarization Maintaining Single Mode or Single Mode fiber, 3mm or 0.9mm jacketing and a range of collimator options.

Optical and Electrical Characteristics*

Item	Symbol	Unit	Min	Тур	Max	Min	Typ	Max	Min	Тур	Max	Test Condition
Optical output power	Po	mW	1.0	2.5	-	5.0	10	-	15	25	-	Tc=25°C
Operating current	I_{OP}	mA	-	-	300	-	-	450	-	-	450	Tc=25°C
Operating voltage	V_{OP}	V	-	-	2.7	-	-	2.7	-		2.7	Tc=25°C
Lasing wavelength	λ	nm	531	532	533	531	532	533	531	532	533	Tc=25°C
Monitor current	I_{MON}	mA										Tc=25°C

^{*}Higher power is possible if MM fiber is used.

Absolute Maximum Rating

Item	Symbol	Unit	Min	Max	Test Condition
Operating temperature	T_{OPR}	°C	-	-	**
Storage temperature	T_{STG}	°C	-40	+85	
LD reverse voltage	V _R (LD)	V	-	2	Tc=25°C
PD reverse voltage	V _R (PD)	V	-	30	Tc=25°C

^{**}It is recommended that the FMXL532 be operated with a TE cooler.

Collimator Options

Туре	M	N	P
Beam Diameter (1/e ² , mm, ±25%)	0.8	1.3	1.9
Divergence (mrad)	<1.2	< 0.8	< 0.5

Fiber Pigtailed 532nm Laser Module

Fiber Specs

Single mode fiber w/ 3mm or 900um protective jacket

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA			0.13	
Mode Field Diameter @ 532nm	MFD	um	3.5	4.0	4.5
Length	L	meter	-	1	-

Polarization maintaining fiber w/ 3mm or 900um protective jacket

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA	-	-	0.11	-
Mode Field Diameter @ 532nm	MFD	um	4.5	5.0	5.5
Length	L	meter	-	1	-
Polarization Extinction Ratio	PER	dB	17	20	-

Note: Polarization and slow axis is aligned to the keyway on the connector.

The keyway is narrow Key for FC/APC connector.

Multimode fiber w/ 3mm or 900um protective jacket

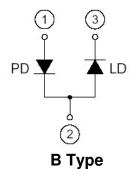
Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA	-	-	0.22	=
Core Diameter	MFD	um	50	50	100
Length	L	meter	-	1	-

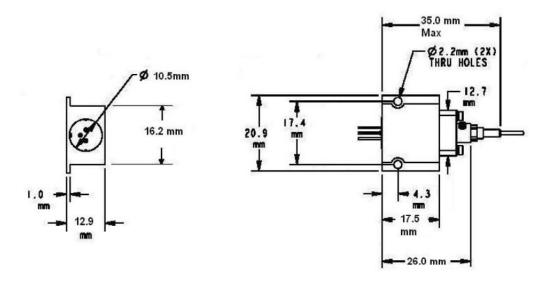
Ordering Information

FMXL-532-ZZZ-Q-FCW

532 = Wavelength	ZZZ = Power Out	Q = Cable Type	F = Connector	C = Collimator	W = Pin out
532 = 532nm	005 = 5mW	T = 900um / SMF	0 = No connector	0 = None	В
	010 = 10 mW	S = 3mm / SMF	S = SC/PC	M = 0.8 mm	
Example:	025 = 25 mW	M = 900um / PMF	G = SC/APC	N = 1.3 mm	
FMXL-532-010-P-A0B		P = 3mm / PMF	F = FC/PC	P = 1.9 mm	
532 = 532nm wavelength		A = 3mm/62.5 MMF	A = FC/APC		
010 = 10 mW output		B = 3mm/50 MMF	R = ferrule only		
P = PM Fiber 3mm jacket		E = 900um/SMF28			
A = FC/APC connector		F = 3mm/SMF28			
0 = no collimator		K = 3mm Armor/SMF			
B = B type pin out		N = 3mm Armor/PMF			
		Y = 3mm/100 MMF			
		$7 = 900 \mu / 100 MMF$			

Please contact Sales@BlueSkyResearch.com for more ordering information or assistance with you specific technical needs.


Fiber Pigtailed 532nm Laser Module


Each purchased FiberMax is provided with test data. Please refer to this data before using the FiberMax.

Shipping Data Includes: I_{OP} , I_{TH} , I_{MON} at Po @ 25C, L-I curve, V-I curve, and L- I_{MON} curve to Po

Electrical Pin Out Configurations Available

Mechanical Outline

Fiber Pigtailed 532nm Laser Module

Handling Care and Precautions for Use of FiberMax™ Modules

1. Absolute Maximum Ratings

Do not exceed, *even momentarily*, the maximum ratings (see page 1, table). When a FiberMax module is driven in excess of it's maximum ratings, it can cause at minimum a considerable reduction in reliability, and potentially instantaneous failure.

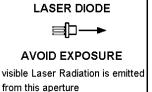
- a. FiberMax modules may be damaged by surge currents generated at power on-off operation. Check on the transient characteristics of the power supply to make sure that such surges do not exceed the maximum ratings.
- b. The maximum ratings are specified for a case temperature of 25°C. Designs should be made to work well within this temperature range. As the case temperature goes up, power dissipation as well as maximum light output power is reduced.

2. Soldering Conditions

Maximum solder-tip temperature is 260°C and soldering time must be within 3.0 seconds. A minimum solder clearance of 1.6mm should be maintained from the root of the lead.

3. Prevention of Breakdown due to Static Electricity

FiberMax modules may be adversely affected by static electricity and surge currents and, consequently, cause breakdown of the module and reduction of reliability unless the following precautions are taken:


- a. Power supplies, installation and measuring equipment should be grounded. A noise filter or noise-cut transformer should be provided on any power supply inputs.
- b. Anyone working with a FiberMax module should be grounded through high resistance (500 K Ohm 1M Ohm) by means of a ground strap and wrist band (for example).
- c. Soldering irons should be grounded to protect laser modules from voltage leaks.
- d. During operation of the FiberMax module, working clothes, hats, and shoes should be static-protected. Cotton-based clothing is preferred.
- e. Any container for carriage and storage should be static-protected.
- f. Avoid using laser modules in an environment where high frequency surge currents may be generated by an inductive electric field (such as a fluorescent lamp). These fields can also cause breakdown or deterioration of the laser module.

4. Package Handling

- a. The laser module package should not be cut off, reworked, or deformed. Care should be taken when handling the fiber to avoid kinking it.
- b. Do not touch the ferrule end. Any scratch or contamination may result in reduction of optical characteristics.
- c. Remove small contaminates on the ferrule surface carefully using a soft cotton tip stick with a small amount of methyl alcohol.

5. Safety

The output light from laser modules is harmful to a human body even if it is invisible. Avoid looking at the output light of a FiberMax module directly, or even indirectly through a lens during operation. Observance of operation should be through an infrared TV camera or related equipment. Refer to IEC 825-1 and 21 CFR 1040.10-1040.11 as a radiation safety standard for laser products.

Low Power Fiber Pigtailed 635nm Laser Module

Description

FiberMax635 is a fiber-pigtailed red laser module delivering superior performance for today's demanding electro-optic applications. Based on Blue Sky Research laser packaging technology, the FiberMax635 provides excellent coupling efficiency and stability in a cost effective package. The thermally stable design of the FiberMax635, based on our standard FiberMAX packaging technology, is a proven, stable package with many thousands of lasers operating in demanding applications. The units are offered with Multimode, Polarization Maintaining Single Mode or Single Mode fiber, 3mm or 0.9mm jacketing and a range of collimator options.

Optical and Electrical Characteristics

Item	Symbol	Unit	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Test Condition
Test Conditions												
Optical power	Po	mW	1.5	1.8	-	5.0	6.0	-	17.5	20.0	-	Tc=25°C
Threshold current	$I_{\scriptscriptstyle TH}$	mA	-	25	-	-	35	50	30	45	65	Tc=25°C
Operating current	I_{OP}	mA	-	30	-	-	55	75	-	95	130	Tc=25°C
Operating voltage	V_{op}	V	-	-	2.7	-	2.2	2.4	-	2.3	2.8	Tc=25°C
Lasing wavelength	λ	nm	630	635	640	635	637	645	630	638	642	Tc=25°C
Monitor current	$\boldsymbol{I}_{\text{mon}}$	mA	-	0.15	-	0.05	0.15	0.3	0.05	0.15	0.25	Tc=25°C
Electrical pin out			A	A, B, 1	Ε	A	A, B, 1	Е		В		

Absolute Maximum Rating

Item	Symbol	Unit	Min	Max	Test Condition
Operating temperature	T_{OPR}	°C	-10	+50	
Storage temperature	T_{STG}	°C	-40	+85	
LD reverse voltage	V _R (LD)	V	-	2	Tc=25°C
PD reverse voltage	V _R (PD)	V	-	30	Tc=25°C

Fiber Specs

Single mode fiber w/ 3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.13	
Mode Field Diameter @ 630nm	MFD	um	3.5	4.0	4.5
Length	L	meter	-	1	-

Fiber Pigtailed 635nm Laser Module

Polarization maintaining fiber w/3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.11	
Mode Field Diameter @ 630nm	MFD	um	4.5	5.0	5.5
Length	L	meter	-	1	-
Polarization Extinction Ratio	PER	dB	17	20	-

Note: Polarization and slow axis is aligned to the keyway on the connector.

The keyway is narrow Key for FC/APC connector.

Multimode fiber w/3mm, 900um or metal protective jacketing

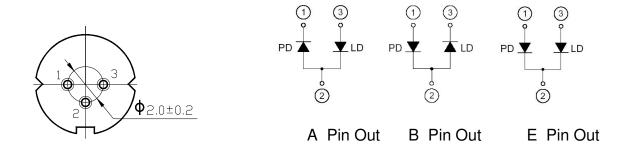
			0		
Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.22	
Core Diameter	MFD	um	50	50	100
Length	L	meter	-	1	-

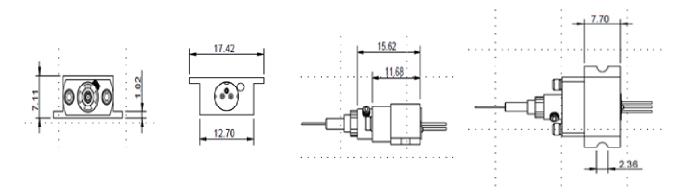
Collimator Options (SM or PM)

Туре	M	N	P	Q
Beam Diameter (1/e ² , mm, ±25%)	0.8	1.3	1.9	3.2
Divergence (mrad)	<1.2	<0.8	<0.5	< 0.4

FiberMax635 PART ORDERING TABLE

FMXL-635-ZZZ-Q-FCW


XXX = Wavelength	ZZZ = Power Out	Q = Cable Type	F = Connector	C = Collimator	W = Pin out
635 = 635nm	001 = 1 mW	T = 900um / SMF	0 = No connector	0 = None	Α
	005 = 5mW	S = 3mm / SMF	S = SC/PC	M = 0.8 mm	В
Example:	020 = 20 mW	M = 900um / PMF	G = SC/APC	N = 1.3 mm	E
FMXL-635-020-P-A0B		P = 3mm / PMF	F = FC/PC	P = 1.9 mm	
635 = 635 nm wavelength		A = 3mm/62.5 MMF	A = FC/APC	Q = 3.2 mm	
020 = 20 mW output		B = 3mm/50 MMF	R = ferrule only		
P = PM Fiber 3mm jacket		E = 900um/SMF28			
A = FC/APC connector		F = 3mm/SMF28			
0 = no collimator		K = 3mm Armor/SMF			
B = B type pin out		N = 3mm Armor/PMF			
		Y = 3mm/100 MMF			
		Z = 900um/100 MMF			


Shipping Data Includes: I_{OP} , I_{TH} , I_{MON} at Po @ 25C, L-I curve, V-I curve, and L- I_{MON} curve to Po

Each purchased FiberMax is provided with test data. Please refer to this data before using the FiberMax.

Electrical Pin Out Configurations Available

Mechanical Outline (dimensions in mm)

Blue Sky Research is able to manufacture additional wavelength FMXL's, and has the capability to use 3.8, 5.6 and/or 9.0 mm TO packages.

Fiber Pigtailed 635nm Laser Module

Handling Care and Precautions for Use of FiberMax™ Modules

1. Absolute Maximum Ratings

Do not exceed, *even momentarily*, the maximum ratings (see page 1, table). When a FiberMax module is driven in excess of it's maximum ratings, it can cause at minimum a considerable reduction in reliability, and potentially instantaneous failure.

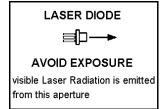
- a. FiberMax modules may be damaged by surge currents generated at power on-off operation. Check on the transient characteristics of the power supply to make sure that such surges do not exceed the maximum ratings.
- b. The maximum ratings are specified for a case temperature of 25°C. Designs should be made to work well within this temperature range. As the case temperature goes up, power dissipation as well as maximum light output power is reduced.

2. Soldering Conditions

Maximum solder-tip temperature is 260°C and soldering time must be within 3.0 seconds. A minimum solder clearance of 1.6mm should be maintained from the root of the lead.

3. Prevention of Breakdown due to Static Electricity

FiberMax modules may be adversely affected by static electricity and surge currents and, consequently, cause breakdown of the module and reduction of reliability unless the following precautions are taken:


- a. Power supplies, installation and measuring equipment should be grounded. A noise filter or noise-cut transformer should be provided on any power supply inputs.
- b. Anyone working with a FiberMax module should be grounded through high resistance (500 K Ohm 1M Ohm) by means of a ground strap and wrist band (for example).
- c. Soldering irons should be grounded to protect laser modules from voltage leaks.
- d. During operation of the FiberMax module, working clothes, hats, and shoes should be static-protected. Cotton-based clothing is preferred.
- e. Any container for carriage and storage should be static-protected.
- f. Avoid using laser modules in an environment where high frequency surge currents may be generated by an inductive electric field (such as a fluorescent lamp). These fields can also cause breakdown or deterioration of the laser module.

4. Package Handling

- a. The laser module package should not be cut off, reworked, or deformed. Care should be taken when handling the fiber to avoid kinking it.
- b. Do not touch the ferrule end. Any scratch or contamination may result in reduction of optical characteristics.
- c. Remove small contaminates on the ferrule surface carefully using a soft cotton tip stick with a small amount of methyl alcohol.

5. Safety

The output light from laser modules is harmful to a human body even if it is invisible. Avoid looking at the output light of a FiberMax module directly, or even indirectly through a lens during operation. Observance of operation should be through an infrared TV camera or related equipment. Refer to IEC 825-1 and 21 CFR 1040.10-1040.11 as a radiation safety standard for laser products.

High Power Fiber Pigtailed 635nm Laser Module

Description

FiberMax635 is a fiber-pigtailed red laser module delivering superior performance for today's demanding electro-optic applications. Based on Blue Sky Research laser packaging technology, the FiberMax635 provides excellent coupling efficiency and stability in a cost effective package. The thermally stable design of the FiberMax635, based on our standard FiberMAX packaging technology, is a proven, stable package with many thousands of lasers operating in demanding applications. The units are offered with Multimode, Polarization Maintaining Single Mode or Single Mode fiber, 3mm or 0.9mm jacketing and a range of collimator options.

Optical and Electrical Characteristics

Item	Symbol	Unit	Min	Тур	Max	Min	Тур	Max	Test Condition
Test Conditions									
Optical power	Po	mW	50	60	-	75	80	-	Tc=25°C
Threshold current	$I_{\scriptscriptstyle TH}$	mA	35	50	65	-	60	90	Tc=25°C
Operating current	I_{OP}	mA	100	150	200	-	250	320	Tc=25°C
Operating voltage	V_{op}	V	2.4	2.7	3.0	-	2.8	3.3	Tc=25°C
Lasing wavelength	λ	nm	632	638	644	632	638	643	Tc=25°C
Monitor current	I_{mon}	mA	-	-	-	-	-	-	Tc=25°C
Electrical pin out				F			F		

Absolute Maximum Rating

Item	Symbol	Unit	Min	Max	Test Condition
Operating temperature	T_{OPR}	°C	-10	+50	
Storage temperature	T_{STG}	°C	-40	+85	
LD reverse voltage	V _R (LD)	V	-	2	Tc=25°C
PD reverse voltage	V _R (PD)	V	-	30	Tc=25°C

Fiber Specs

Single mode fiber w/ 3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.13	
Mode Field Diameter @ 630nm	MFD	um	3.5	4.0	4.5
Length	L	meter	-	1	-

Fiber Pigtailed 635nm Laser Module

Polarization maintaining fiber w/3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.11	
Mode Field Diameter @ 630nm	MFD	um	4.5	5.0	5.5
Length	L	meter	-	1	-
Polarization Extinction Ratio	PER	dB	17	20	-

Note: Polarization and slow axis is aligned to the keyway on the connector.

The keyway is narrow Key for FC/APC connector.

Multimode fiber w/3mm, 900um or metal protective jacketing

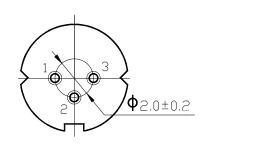
Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.22	
Core Diameter	MFD	um	50	50	100
Length	L	meter	ı	1	-

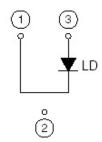
Collimator Options (SM or PM)

Туре	M	N	P	Q
Beam Diameter (1/e ² , mm, ±25%)	0.8	1.3	1.9	3.2
Divergence (mrad)	<1.2	<0.8	<0.5	< 0.4

FiberMax635 PART ORDERING TABLE

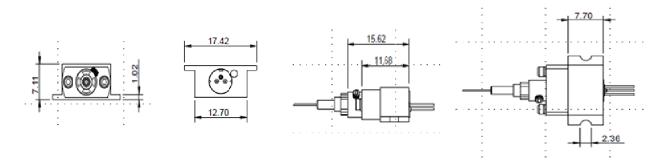
FMXL-635-ZZZ-Q-FCW


XXX = Wavelength	ZZZ = Power Out	Q = Cable Type	F = Connector	C = Collimator	W = Pin out
635 = 635nm	060 = 60 mW	T = 900um / SMF	0 = No connector	0 = None	F
	080 = 80 mW	S = 3mm / SMF	S = SC/PC	M = 0.8 mm	
Example:		M = 900um / PMF	G = SC/APC	N = 1.3 mm	
FMXL-635-060-P-A0B		P = 3mm / PMF	F = FC/PC	P = 1.9 mm	
635 = 635 nm wavelength		A = 3mm/62.5 MMF	A = FC/APC	Q = 3.2 mm	
060 = 60 mW output		B = 3mm/50 MMF	R = ferrule only		
P = PM Fiber 3mm jacket		E = 900um/SMF28			
A = FC/APC connector		F = 3mm/SMF28			
0 = no collimator		K = 3mm Armor/SMF			
B = B type pin out		N = 3mm Armor/PMF			
		Y = 3mm/100 MMF			
		Z = 900um/100 MMF			



Shipping Data Includes: I_{OP} , I_{TH} , I_{MON} at Po @ 25C, L-I curve, V-I curve, and L- I_{MON} curve to Po

Each purchased FiberMax is provided with test data. Please refer to this data before using the FiberMax.


Electrical Pin Out Configurations Available

F Pin Out

Mechanical Outline (Dimensions in mm)

Blue Sky Research is able to manufacture additional wavelength FMXL's, and has the capability to use 3.8, 5.6 and/or 9.0 mm TO packages.

Fiber Pigtailed 635nm Laser Module

Handling Care and Precautions for Use of FiberMax™ Modules

1. Absolute Maximum Ratings

Do not exceed, *even momentarily*, the maximum ratings (see page 1, table). When a FiberMax module is driven in excess of it's maximum ratings, it can cause at minimum a considerable reduction in reliability, and potentially instantaneous failure.

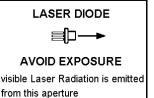
- a. FiberMax modules may be damaged by surge currents generated at power on-off operation. Check on the transient characteristics of the power supply to make sure that such surges do not exceed the maximum ratings.
- b. The maximum ratings are specified for a case temperature of 25°C. Designs should be made to work well within this temperature range. As the case temperature goes up, power dissipation as well as maximum light output power is reduced.

2. Soldering Conditions

Maximum solder-tip temperature is 260°C and soldering time must be within 3.0 seconds. A minimum solder clearance of 1.6mm should be maintained from the root of the lead.

3. Prevention of Breakdown due to Static Electricity

FiberMax modules may be adversely affected by static electricity and surge currents and, consequently, cause breakdown of the module and reduction of reliability unless the following precautions are taken:


- a. Power supplies, installation and measuring equipment should be grounded. A noise filter or noise-cut transformer should be provided on any power supply inputs.
- b. Anyone working with a FiberMax module should be grounded through high resistance (500 K Ohm 1M Ohm) by means of a ground strap and wrist band (for example).
- c. Soldering irons should be grounded to protect laser modules from voltage leaks.
- d. During operation of the FiberMax module, working clothes, hats, and shoes should be static-protected. Cotton-based clothing is preferred.
- e. Any container for carriage and storage should be static-protected.
- f. Avoid using laser modules in an environment where high frequency surge currents may be generated by an inductive electric field (such as a fluorescent lamp). These fields can also cause breakdown or deterioration of the laser module.

4. Package Handling

- a. The laser module package should not be cut off, reworked, or deformed. Care should be taken when handling the fiber to avoid kinking it.
- b. Do not touch the ferrule end. Any scratch or contamination may result in reduction of optical characteristics.
- c. Remove small contaminates on the ferrule surface carefully using a soft cotton tip stick with a small amount of methyl alcohol.

5. Safety

The output light from laser modules is harmful to a human body even if it is invisible. Avoid looking at the output light of a FiberMax module directly, or even indirectly through a lens during operation. Observance of operation should be through an infrared TV camera or related equipment. Refer to IEC 825-1 and 21 CFR 1040.10-1040.11 as a radiation safety standard for laser products.

Fiber Pigtailed 658nm Laser Module

Description

FiberMax658 is a fiber-pigtailed red laser module delivering superior performance for today's demanding electro-optic applications. Based on Blue Sky Research laser packaging technology, the FiberMax658 provides excellent coupling efficiency and stability in a cost effective package. The thermally stable design of the FiberMax658, based on our standard FiberMAX packaging technology, is a proven, stable package with many thousands of lasers operating in demanding applications. The units are offered with Multimode, Polarization Maintaining Single Mode or Single Mode fiber, 3mm or 0.9mm jacketing and a range of collimator options.

Optical and Electrical Characteristics

Item	Symbol	Unit	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Test Condition
Test Conditions															
Optical power	Po	mW	1.5	2	-	5.0	6.0	-	17.5	20.0	-	75	80	-	Tc=25°C
Threshold current	$I_{\scriptscriptstyle TH}$	mA	-	20	25	-	40	50	30	45	70	-	55	75	Tc=25°C
Operating current	I_{OP}	mA	-	27	35	-	60	80	-	80	120	-	170	210	Tc=25°C
Operating voltage	V_{OP}	V	-	2.2	2.5	-	2.3	2.6	2.1	2.6	3.0	-	2.45	3.0	Tc=25°C
Lasing wavelength	λ	nm	650	655	660	645	655	660	645	658	665	652	660	664	Tc=25°C
Monitor current	I_{MON}	mA	0.1	0.15	0.3	0.1	0.2	0.5	0.05	0.3	1.5	-	0.15	-	Tc=25°C
Electrical pin out			A	A, B, 1	Е	A	A, B, 1	Е		A		I	A or E	3	

Absolute Maximum Rating

Item	Symbol	Unit	Min	Max	Test Condition
Operating temperature	T_{OPR}	°C	-10	+50	
Storage temperature	T_{STG}	°C	-40	+85	
LD reverse voltage	V _R (LD)	V	-	2	Tc=25°C
PD reverse voltage	V_{R} (PD)	V	-	30	Tc=25°C

Fiber Specifications

Single mode fiber w/ 3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.13	
Mode Field Diameter @ 630nm	MFD	um	3.5	4.0	4.5
Length	L	meter	-	1	-

Fiber Pigtailed 658nm Laser Module

Polarization maintaining fiber w/ 3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.11	
Mode Field Diameter @ 630nm	MFD	um	4.5	5.0	5.5
Length	L	meter	-	1	-
Polarization Extinction Ratio	PER	dB	17	20	-

Note: Polarization and slow axis is aligned to the keyway on the connector.

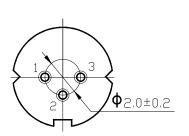
The keyway is narrow Key for FC/APC connector.

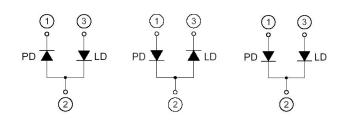
Multimode fiber w/ 3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.22	
Core Diameter	MFD	um	50	50	100
Length	L	meter	-	1	-

Collimator Options (SM or PM)

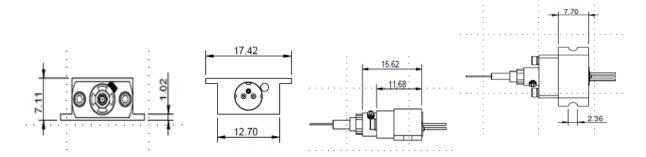
Туре	M	N	P	Q
Beam Diameter (1/e ² , mm, ±25%)	0.8	1.3	1.9	3.2
Divergence (mrad)	<1.2	<0.8	<0.5	< 0.4


FiberMax658 PART ORDERING TABLE


FMXL-658-ZZZ-Q-FCW

XXX = Wavelength	ZZZ = Power Out	Q = Cable Type	F = Connector	C = Collimator	W = Pin out
658 = 658nm	001 = 1mW 006 = 6 mW	T = 900um / SMF	0 = No connector	0 = None	Α
	020 = 20 mW	S = 3mm / SMF	S = SC/PC	M = 0.8 mm	В
Example:	080 = 80 mW	M = 900um / PMF	G = SC/APC	N = 1.3 mm	E
FMXL-658-020-P-A0B		P = 3mm / PMF	F = FC/PC	P = 1.9 mm	
658 = 658 nm wavelength		A = 3mm/62.5 MMF	A = FC/APC	Q = 3.2 mm	
020 = 20 mW output		B = 3mm/50 MMF	R = ferrule only		
P = PM Fiber 3mm jacket		E = 900um/SMF28			
A = FC/APC connector		F = 3mm/SMF28			
0 = no collimator		K = 3mm Armor/SMF			
B = B type pin out		N = 3mm Armor/PMF Y = 3mm/100 MMF Z = 900um/100 MMF			

Electrical Pin Out Configurations Available



A Pin Out

B Pin Out

E Pin Out

Mechanical Package

Shipping Data Includes:

 $I_{\text{OP}},\,I_{\text{TH}},\,I_{\text{MON}}$ at Po @ 25C,

L-I curve, V-I curve, and L- I_{MON} curve to Po

Each purchased FiberMax is provided with test data.

Please refer to this data before using the FiberMax.

Handling Care and Precautions for Use of FiberMax™ Modules

Fiber Pigtailed 658nm Laser Module

1. Absolute Maximum Ratings

Do not exceed, even momentarily, the maximum ratings (see page 1, table). When a FiberMax module is driven in excess of it's maximum ratings, it can cause at minimum a considerable reduction in reliability, and potentially instantaneous failure.

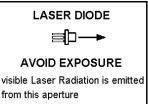
- a. FiberMax modules may be damaged by surge currents generated at power on-off operation. Check on the transient characteristics of the power supply to make sure that such surges do not exceed the maximum ratings.
- b. The maximum ratings are specified for a case temperature of 25°C. Designs should be made to work well within this temperature range. As the case temperature goes up, power dissipation as well as maximum light output power is reduced.

2. Soldering Conditions

Maximum solder-tip temperature is 260°C and soldering time must be within 3.0 seconds. A minimum solder clearance of 1.6mm should be maintained from the root of the lead.

3. Prevention of Breakdown due to Static Electricity

FiberMax modules may be adversely affected by static electricity and surge currents and, consequently, cause breakdown of the module and reduction of reliability unless the following precautions are taken:


- a. Power supplies, installation and measuring equipment should be grounded. A noise filter or noise-cut transformer should be provided on any power supply inputs.
- b. Anyone working with a FiberMax module should be grounded through high resistance (500 K Ohm 1M Ohm) by means of a ground strap and wrist band (for example).
- c. Soldering irons should be grounded to protect laser modules from voltage leaks.
- d. During operation of the FiberMax module, working clothes, hats, and shoes should be static-protected. Cotton-based clothing is preferred.
- e. Any container for carriage and storage should be static-protected.
- f. Avoid using laser modules in an environment where high frequency surge currents may be generated by an inductive electric field (such as a fluorescent lamp). These fields can also cause breakdown or deterioration of the laser module.

4. Package Handling

- a. The laser module package should not be cut off, reworked, or deformed. Care should be taken when handling the fiber to avoid kinking it.
- b. Do not touch the ferrule end. Any scratch or contamination may result in reduction of optical characteristics.
- c. Remove small contaminates on the ferrule surface carefully using a soft cotton tip stick with a small amount of methyl alcohol.

5. Safety

The output light from laser modules is harmful to a human body even if it is invisible. Avoid looking at the output light of a FiberMax module directly, or even indirectly through a lens during operation. Observance of operation should be through an infrared TV camera or related equipment. Refer to IEC 825-1 and 21 CFR 1040.10-1040.11 as a radiation safety standard for laser products.

Fiber Pigtailed 690nm Laser Module

Description

FiberMax690 is a fiber-pigtailed red laser module delivering superior performance for today's demanding electro-optic applications. Based on Blue Sky Research laser packaging technology, the FiberMax690 provides excellent coupling efficiency and stability in a cost effective package. The thermally stable design of the FiberMax690, based on our standard FiberMAX packaging technology, is a proven, stable package with many thousands of lasers operating in demanding applications. The units are offered with Multimode, Polarization Maintaining Single Mode or Single Mode fiber, 3mm or 0.9mm jacketing and a range of collimator options.

Optical and Electrical Characteristics

Item	Symbol	Unit	Min	Тур	Max	Min	Тур	Max	Test Condition
Test Conditions									
Optical power	Po	mW	17.5	20	-	25	30	-	Tc=25°C
Threshold current	$I_{\scriptscriptstyle TH}$	mA	30	45	70	-	30	60	Tc=25°C
Operating current	I_{OP}	mA	-	85	130	-	75	120	Tc=25°C
Operating voltage	V_{op}	V	2.1	2.5	2.8	-	2.3	3.0	Tc=25°C
Lasing wavelength	λ	nm	680	690	695	675	685	695	Tc=25°C
Monitor current	I_{mon}	mA	0.02	0.1	0.45	-	0.15	0.35	Tc=25°C
Electrical pin out	_			A			A, B		

Absolute Maximum Rating

Item	Symbol	Unit	Min	Max	Test Condition
Operating temperature	T_{OPR}	°C	-10	+50	
Storage temperature	T_{STG}	°C	-40	+85	
LD reverse voltage	V _R (LD)	V	-	2	Tc=25°C
PD reverse voltage	V _R (PD)	V	-	30	Tc=25°C

Fiber Specs

Single mode fiber w/ 3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.13	
Mode Field Diameter @ 630nm	MFD	um	3.5	4.0	4.5
Length	L	meter	-	1	-

Fiber Pigtailed 690nm Laser Module

Polarization maintaining fiber w/3mm, 900um or metal protective jacketing

	,				
Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.11	
Mode Field Diameter @ 630nm	MFD	um	4.5	5.0	5.5
Length	L	meter	-	1	-
Polarization Extinction Ratio	PER	dB	17	20	-

Note: Polarization and slow axis is aligned to the keyway on the connector.

The keyway is narrow Key for FC/APC connector.

Multimode fiber w/3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.22	
Core Diameter	MFD	um	50	50	100
Length	L	meter	-	1	-

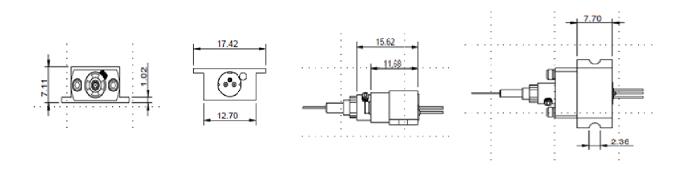
Collimator Options (SM or PM)

Туре	M	N	P	Q
Beam Diameter (1/e ² , mm, ±25%)	0.8	1.3	1.9	3.2
Divergence (mrad)	<1.2	<0.8	< 0.5	<0.4

FiberMax690 PART ORDERING TABLE

FMXL-690-ZZZ-Q-FCW

XXX = Wavelength	ZZZ = Power Out	Q = Cable Type	F = Connector	C = Collimator	W = Pin out
690 = 690nm	020 = 20 mW 030 = 30 mW	T = 900um / SMF	0 = No connector	0 = None	Α
		S = 3mm / SMF	S = SC/PC	M = 0.8 mm	В
Example:		M = 900um / PMF	G = SC/APC	N = 1.3 mm	E
FMXL-690-020-P-A0B		P = 3mm / PMF	F = FC/PC	P = 1.9 mm	
690 = 690 nm wavelength		A = 3mm/62.5 MMF	A = FC/APC	Q = 3.2 mm	
020 = 20 mW output		B = 3mm/50 MMF	R = ferrule only		
P = PM Fiber 3mm jacket		E = 900um/SMF28			
A = FC/APC connector		F = 3mm/SMF28			
0 = no collimator		K = 3mm Armor/SMF			
B = B type pin out		N = 3mm Armor/PMF Y = 3mm/100 MMF Z = 900um/100 MMF			


Shipping Data Includes: I_{OP} , I_{TH} , I_{MON} at Po @ 25C, L-I curve, V-I curve, and L- I_{MON} curve to Po

Each purchased FiberMax is provided with test data. Please refer to this data before using the FiberMax.

Electrical Pin Out Configurations Available

Mechanical Outline (dimensions in mm)

Blue Sky Research is able to manufacture additional wavelength FMXL's, and has the capability to use 3.8, 5.6 and/or 9.0 mm TO packages.

Fiber Pigtailed 690nm Laser Module

Handling Care and Precautions for Use of FiberMax™ Modules

1. Absolute Maximum Ratings

Do not exceed, *even momentarily*, the maximum ratings (see page 1, table). When a FiberMax module is driven in excess of it's maximum ratings, it can cause at minimum a considerable reduction in reliability, and potentially instantaneous failure.

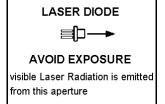
- a. FiberMax modules may be damaged by surge currents generated at power on-off operation. Check on the transient characteristics of the power supply to make sure that such surges do not exceed the maximum ratings.
- b. The maximum ratings are specified for a case temperature of 25°C. Designs should be made to work well within this temperature range. As the case temperature goes up, power dissipation as well as maximum light output power is reduced.

2. Soldering Conditions

Maximum solder-tip temperature is 260°C and soldering time must be within 3.0 seconds. A minimum solder clearance of 1.6mm should be maintained from the root of the lead.

3. Prevention of Breakdown due to Static Electricity

FiberMax modules may be adversely affected by static electricity and surge currents and, consequently, cause breakdown of the module and reduction of reliability unless the following precautions are taken:


- a. Power supplies, installation and measuring equipment should be grounded. A noise filter or noise-cut transformer should be provided on any power supply inputs.
- b. Anyone working with a FiberMax module should be grounded through high resistance (500 K Ohm 1M Ohm) by means of a ground strap and wrist band (for example).
- c. Soldering irons should be grounded to protect laser modules from voltage leaks.
- d. During operation of the FiberMax module, working clothes, hats, and shoes should be static-protected. Cotton-based clothing is preferred.
- e. Any container for carriage and storage should be static-protected.
- f. Avoid using laser modules in an environment where high frequency surge currents may be generated by an inductive electric field (such as a fluorescent lamp). These fields can also cause breakdown or deterioration of the laser module.

4. Package Handling

- a. The laser module package should not be cut off, reworked, or deformed. Care should be taken when handling the fiber to avoid kinking it.
- b. Do not touch the ferrule end. Any scratch or contamination may result in reduction of optical characteristics.
- c. Remove small contaminates on the ferrule surface carefully using a soft cotton tip stick with a small amount of methyl alcohol.

5. Safety

The output light from laser modules is harmful to a human body even if it is invisible. Avoid looking at the output light of a FiberMax module directly, or even indirectly through a lens during operation. Observance of operation should be through an infrared TV camera or related equipment. Refer to IEC 825-1 and 21 CFR 1040.10-1040.11 as a radiation safety standard for laser products.

Fiber Pigtailed 785nm Laser Module

Description

FiberMax785 is a fiber-pigtailed red laser module delivering superior performance for today's demanding electro-optic applications. Based on Blue Sky Research laser packaging technology, the FiberMax785 provides excellent coupling efficiency and stability in a cost effective package. The thermally stable design of the FiberMax785, based on our standard FiberMAX packaging technology, is a proven, stable package with many thousands of lasers operating in demanding applications. The units are offered with Multimode, Polarization Maintaining Single Mode or Single Mode fiber, 3mm or 0.9mm jacketing and a range of collimator options.

Optical and Electrical Characteristics*

Item	Symbol	Unit	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Test Condition
Test Conditions												
Optical power	Po	mW	-	5	-	-	10	-	-	50	-	Tc=25°C
Threshold current	$I_{\scriptscriptstyle TH}$	mA	8	12	25	-	15	25	-	35	55	Tc=25°C
Operating current	I_{OP}	mA	-	22	40	30	45	60	-	135	190	Tc=25°C
Operating voltage	$V_{\scriptscriptstyle OP}$	V	-	2.2	2.4	1.6	1.9	2.3	-	2.3	2.8	Tc=25°C
Lasing wavelength	λ	nm	775	788	800	770	785	800	775	783	795	Tc=25°C
Monitor current	$\boldsymbol{I}_{\text{mon}}$	mA	0.5	-	1.5	0.5	-	1.5	0.05	0.19	0.6	Tc=25°C
Electrical pin out			A	A, B, 1	Е	A	A, B, l	Е		A,B		

Absolute Maximum Rating

Item	Symbol	Unit	Min	Max	Test Condition
Operating temperature	T_{OPR}	°C	-10	+50	
Storage temperature	T_{STG}	°C	-40	+85	
LD reverse voltage	V _R (LD)	V	-	2	Tc=25°C
PD reverse voltage	V _R (PD)	V	=	30	Tc=25°C

Fiber Specs

Single mode fiber w/3mm, 900um or metal protective jacketing

Single mode riser w/ Sinni, 200 aim of metal protective jacketing								
Item	Symbol	Unit	Min	Тур	Max			
Fiber numerical aperture	NA		-	0.13				
Mode Field Diameter @ 630nm	MFD	um	3.5	4.0	4.5			
Length	L	meter	-	1	-			

Fiber Pigtailed 785nm Laser Module

Polarization maintaining fiber w/ 3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.11	
Mode Field Diameter @ 630nm	MFD	um	4.5	5.0	5.5
Length	L	meter	-	1	-
Polarization Extinction Ratio	PER	dB	17	20	-

Note: Polarization and slow axis is aligned to the keyway on the connector.

The keyway is narrow Key for FC/APC connector.

Multimode fiber w/3mm, 900um or metal protective jacketing

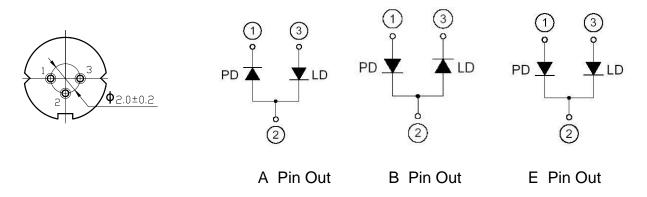
Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.22	
Core Diameter	MFD	um	50	50	100
Length	L	meter	-	1	-

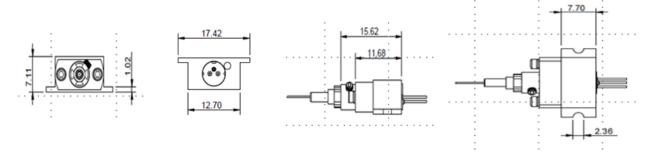
Collimator Options (SM or PM)

Туре	M	N	P	Q
Beam Diameter (1/e ² , mm, ±25%)	0.8	1.3	1.9	3.2
Divergence (mrad)	<1.2	< 0.8	< 0.5	< 0.4

FiberMax785 PART ORDERING TABLE

FMXL-785-ZZZ-Q-FCW


XXX = Wavelength	ZZZ = Power Out	Q = Cable Type	F = Connector	C = Collimator	W = Pin out
785 = 785nm	005 = 5mW 010 = 10mW	T = 900um / SMF	0 = No connector	0 = None	Α
	050 = 50 mW	S = 3mm / SMF	S = SC/PC	M = 0.8 mm	В
Example:		M = 900um / PMF	G = SC/APC	N = 1.3 mm	E
FMXL-785-010-P-A0B		P = 3mm / PMF	F = FC/PC	P = 1.9 mm	
785 = 785 nm wavelength		A = 3mm/62.5 MMF	A = FC/APC	Q = 3.2 mm	
010 = 10 mW output		B = 3mm/50 MMF	R = ferrule only		
P = PM Fiber 3mm jacket		E=900um/SMF28			
A = FC/APC connector		F=3mm/SMF28			
0 = no collimator		K=3mm Armor/SMF			
B = B type pin out		N=3mm Armor/PMF			


Shipping Data Includes: I_{OP} , I_{TH} , I_{MON} at Po @ 25C, L-I curve, V-I curve, and L- I_{MON} curve to Po

Each purchased FiberMax is provided with test data. Please refer to this data before using the FiberMax.

Electrical Pin Out Configurations Available

Mechanical Outline

Blue Sky Research is able to manufacture additional wavelength FMXL's, and has the capability to use 3.8, 5.6 and/or 9.0 mm TO packages.

Fiber Pigtailed 785nm Laser Module

Handling Care and Precautions for Use of FiberMax™ Modules

1. Absolute Maximum Ratings

Do not exceed, *even momentarily*, the maximum ratings (see page 1, table). When a FiberMax module is driven in excess of it's maximum ratings, it can cause at minimum a considerable reduction in reliability, and potentially instantaneous failure.

- a. FiberMax modules may be damaged by surge currents generated at power on-off operation. Check on the transient characteristics of the power supply to make sure that such surges do not exceed the maximum ratings.
- b. The maximum ratings are specified for a case temperature of 25°C. Designs should be made to work well within this temperature range. As the case temperature goes up, power dissipation as well as maximum light output power is reduced.

2. Soldering Conditions

Maximum solder-tip temperature is 260°C and soldering time must be within 3.0 seconds. A minimum solder clearance of 1.6mm should be maintained from the root of the lead.

3. Prevention of Breakdown due to Static Electricity

FiberMax modules may be adversely affected by static electricity and surge currents and, consequently, cause breakdown of the module and reduction of reliability unless the following precautions are taken:

- a. Power supplies, installation and measuring equipment should be grounded. A noise filter or noise-cut transformer should be provided on any power supply inputs.
- b. Anyone working with a FiberMax module should be grounded through high resistance (500 K Ohm 1M Ohm) by means of a ground strap and wrist band (for example).
- c. Soldering irons should be grounded to protect laser modules from voltage leaks.
- d. During operation of the FiberMax module, working clothes, hats, and shoes should be static-protected. Cotton-based clothing is preferred.
- e. Any container for carriage and storage should be static-protected.
- f. Avoid using laser modules in an environment where high frequency surge currents may be generated by an inductive electric field (such as a fluorescent lamp). These fields can also cause breakdown or deterioration of the laser module.

4. Package Handling

- a. The laser module package should not be cut off, reworked, or deformed. Care should be taken when handling the fiber to avoid kinking it.
- b. Do not touch the ferrule end. Any scratch or contamination may result in reduction of optical characteristics.
- c. Remove small contaminates on the ferrule surface carefully using a soft cotton tip stick with a small amount of methyl alcohol.

5. Safety

The output light from laser modules is harmful to a human body even if it is invisible. Avoid looking at the output light of a FiberMax module directly, or even indirectly through a lens during operation. Observance of operation should be through an infrared TV camera or related equipment. Refer to IEC 825-1 and 21 CFR 1040.10-1040.11 as a radiation safety standard for laser products.

LASER DIODE

AVOID EXPOSURE

visible Laser Radiation is emitted from this aperture

Fiber Pigtailed 808nm Laser Module

Description

FiberMax808 is a fiber-pigtailed red laser module delivering superior performance for today's demanding electro-optic applications. Based on Blue Sky Research laser packaging technology, the FiberMax808 provides excellent coupling efficiency and stability in a cost effective package. The thermally stable design of the FiberMax808, based on our standard FiberMAX packaging technology, is a proven, stable package with many thousands of lasers operating in demanding applications. The units are offered with Multimode, Polarization Maintaining Single Mode or Single Mode fiber, 3mm or 0.9mm jacketing and a range of collimator options.

Optical and Electrical Characteristics

Optical and Dic						
Item	Symbol	Unit	Min	Тур	Max	Test Condition
Test Conditions						
Optical power	Po	mW	-	50	-	Tc=25°C
Threshold current	$I_{\scriptscriptstyle TH}$	mA	-	80	100	Tc=25°C
Operating current	I_{OP}	mA	150	170	190	Tc=25°C
Operating voltage	$V_{\scriptscriptstyle OP}$	V	-	2.1	2.5	Tc=25°C
Lasing wavelength	λ	nm	800	805	810	Tc=25°C
Monitor current	I_{mon}	mA	-	-	-	Tc=25°C
Electrical pin out				A, B		

Absolute Maximum Rating

Item	Symbol	Unit	Min	Max	Test Condition
Operating temperature	T_{OPR}	°C	-10	+50	
Storage temperature	T_{STG}	°C	-40	+85	
LD reverse voltage	V_{R} (LD)	V	-	2	Tc=25°C
PD reverse voltage	V_{R} (PD)	V	-	30	Tc=25°C

Fiber Specs

Single mode fiber w/ 3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.13	
Mode Field Diameter @ 630nm	MFD	um	3.5	4.0	4.5
Length	L	meter	-	1	=

Fiber Pigtailed 808nm Laser Module

Polarization maintaining fiber w/3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.11	
Mode Field Diameter @ 630nm	MFD	um	4.5	5.0	5.5
Length	L	meter	-	1	-
Polarization Extinction Ratio	PER	dB	17	20	-

Note: Polarization and slow axis is aligned to the keyway on the connector.

The keyway is narrow Key for FC/APC connector.

Multimode fiber w/3mm, 900um or metal protective jacketing

			0		
Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.22	
Core Diameter	MFD	um	50	50	100
Length	L	meter	-	1	-

Collimator Options (SM or PM)

Туре	M	N	P	Q
Beam Diameter (1/e ² , mm, ±25%)	0.8	1.3	1.9	3.2
Divergence (mrad)	<1.2	<0.8	< 0.5	<0.4

FiberMax808 PART ORDERING TABLE

FMXL-808-ZZZ-Q-FCW

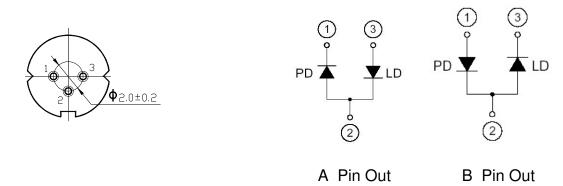
0 = no collimator

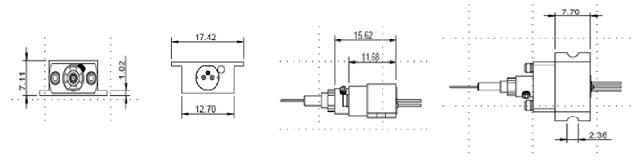
B = B type pin out

XXX = Wavelength 808 = 808nm	ZZZ = Power Out 050 = 50mW	Q = Cable Type T = 900um / SMF S = 3mm / SMF	F = Connector 0 = No connector S = SC/PC	C = Collimator 0 = None M = 0.8 mm	W = Pin out A B
Example:		M = 900um / PMF	G = SC/APC	N = 1.3 mm	
FMXL-808-050-P-A0B		P = 3mm / PMF	F = FC/PC	P = 1.9 mm	
808 = 808 nm wavelength		A = 3mm/62.5 MMF	A = FC/APC	Q = 3.2 mm	
050 = 50 mW output		B = 3mm/50 MMF	R = ferrule only		
P = PM Fiber 3mm jacket		E = 900um/SMF28			
A = FC/APC connector		F = 3mm/SMF28			

N = 3mm Armor/PMF Y = 3mm/100 MMFZ = 900um/100 MMF

K = 3mm Armor/SMF




Shipping Data Includes: I_{OP} , I_{TH} , I_{MON} at Po @ 25C, L-I curve, V-I curve, and L- I_{MON} curve to Po

Each purchased FiberMax is provided with test data. Please refer to this data before using the FiberMax.

Electrical Pin Out Configurations Available

Mechanical Outline (dimensions in mm)

Blue Sky Research is able to manufacture additional wavelength FMXL's, and has the capability to use 3.8, 5.6 and/or 9.0 mm TO packages.

Fiber Pigtailed 808nm Laser Module

Handling Care and Precautions for Use of FiberMax™ Modules

1. Absolute Maximum Ratings

Do not exceed, *even momentarily*, the maximum ratings (see page 1, table). When a FiberMax module is driven in excess of it's maximum ratings, it can cause at minimum a considerable reduction in reliability, and potentially instantaneous failure.

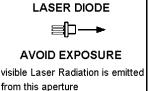
- a. FiberMax modules may be damaged by surge currents generated at power on-off operation. Check on the transient characteristics of the power supply to make sure that such surges do not exceed the maximum ratings.
- b. The maximum ratings are specified for a case temperature of 25°C. Designs should be made to work well within this temperature range. As the case temperature goes up, power dissipation as well as maximum light output power is reduced.

2. Soldering Conditions

Maximum solder-tip temperature is 260°C and soldering time must be within 3.0 seconds. A minimum solder clearance of 1.6mm should be maintained from the root of the lead.

3. Prevention of Breakdown due to Static Electricity

FiberMax modules may be adversely affected by static electricity and surge currents and, consequently, cause breakdown of the module and reduction of reliability unless the following precautions are taken:


- a. Power supplies, installation and measuring equipment should be grounded. A noise filter or noise-cut transformer should be provided on any power supply inputs.
- b. Anyone working with a FiberMax module should be grounded through high resistance (500 K Ohm 1M Ohm) by means of a ground strap and wrist band (for example).
- c. Soldering irons should be grounded to protect laser modules from voltage leaks.
- d. During operation of the FiberMax module, working clothes, hats, and shoes should be static-protected. Cotton-based clothing is preferred.
- e. Any container for carriage and storage should be static-protected.
- f. Avoid using laser modules in an environment where high frequency surge currents may be generated by an inductive electric field (such as a fluorescent lamp). These fields can also cause breakdown or deterioration of the laser module.

4. Package Handling

- a. The laser module package should not be cut off, reworked, or deformed. Care should be taken when handling the fiber to avoid kinking it.
- b. Do not touch the ferrule end. Any scratch or contamination may result in reduction of optical characteristics.
- c. Remove small contaminates on the ferrule surface carefully using a soft cotton tip stick with a small amount of methyl alcohol.

5. Safety

The output light from laser modules is harmful to a human body even if it is invisible. Avoid looking at the output light of a FiberMax module directly, or even indirectly through a lens during operation. Observance of operation should be through an infrared TV camera or related equipment. Refer to IEC 825-1 and 21 CFR 1040.10-1040.11 as a radiation safety standard for laser products.

Fiber Pigtailed 830nm Laser Module

Description

FiberMax830 is a fiber-pigtailed red laser module delivering superior performance for today's demanding electro-optic applications. Based on Blue Sky Research laser packaging technology, the FiberMax830 provides excellent coupling efficiency and stability in a cost effective package. The thermally stable design of the FiberMax830, based on our standard FiberMAX packaging technology, is a proven, stable package with many thousands of lasers operating in demanding applications. The units are offered with Multimode, Polarization Maintaining Single Mode or Single Mode fiber, 3mm or 0.9mm jacketing and a range of collimator options.

Optical and Electrical Characteristics

Item	Symbol	Unit	Min	Тур	Max	Min	Тур	Max	Test Condition
Test Conditions									
Optical power	Po	mW	20	25	-	95	100	-	Tc=25°C
Threshold current	$I_{\scriptscriptstyle TH}$	mA	-	20	40	-	35	50	Tc=25°C
Operating current	I_{OP}	mA	-	75	100	-	240	280	Tc=25°C
Operating voltage	V_{OP}	V	-	1.9	2.4	-	1.3	2.2	Tc=25°C
Lasing wavelength	λ	nm	820	830	840	815	825	835	Tc=25°C
Monitor current	I_{MON}	mA	0.2	-	1.0	0.8	4.0	10.8	Tc=25°C
Electrical pin out			1	A or I	3	1	A or I	3	

Absolute Maximum Rating

Item	Symbol	Unit	Min	Max	Test Condition
Operating temperature	T_{OPR}	°C	-10	+50	
Storage temperature	T_{STG}	°C	-40	+85	
LD reverse voltage	V_{R} (LD)	V	-	2	Tc=25°C
PD reverse voltage	V _R (PD)	V	-	30	Tc=25°C

Fiber Specs

Single mode fiber w/ 3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.13	
Mode Field Diameter @ 630nm	MFD	um	3.5	4.0	4.5
Length	L	meter	-	1	-

Fiber Pigtailed 830nm Laser Module

Polarization maintaining fiber w/ 3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.11	
Mode Field Diameter @ 630nm	MFD	um	4.5	5.0	5.5
Length	L	meter	-	1	-
Polarization Extinction Ratio	PER	dB	17	20	-

Note: Polarization and slow axis is aligned to the keyway on the connector.

The keyway is narrow Key for FC/APC connector.

Multimode fiber w/3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.22	
Core Diameter	MFD	um	50	50	100
Length	L	meter	-	1	-

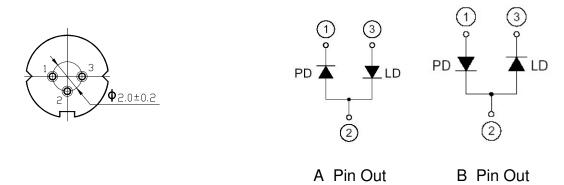
Collimator Options (SM or PM)

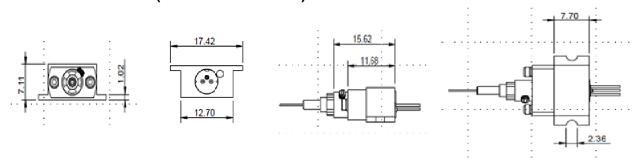
Туре	M	N	P	Q
Beam Diameter (1/e ² , mm, ±25%)	0.8	1.3	1.9	3.2
Divergence (mrad)	<1.2	<0.8	<0.5	< 0.4

FiberMax830 PART ORDERING TABLE

FMXL-830-ZZZ-Q-FCW

XXX = Wavelength 830 = 830nm	ZZZ = Power Out 025 = 25mW 100 = 100mW	Q = Cable Type T = 900um / SMF	F = Connector 0 = No connector	C = Collimator 0 = None	W = Pin out A
		S = 3mm / SMF	S = SC/PC	M = 0.8 mm	В
Example:		M = 900um / PMF	G = SC/APC	N = 1.3 mm	
FMXL-830-025-P-A0B		P = 3mm / PMF	F = FC/PC	P = 1.9 mm	
830 = 830 nm wavelength		A = 3mm/62.5 MMF	A = FC/APC	Q = 3.2 mm	
025 = 25 mW output		B = 3mm/50 MMF	R = ferrule only		
P = PM Fiber 3mm jacket		E = 900um/SMF28			
A = FC/APC connector		F = 3mm/SMF28			
0 = no collimator		K = 3mm Armor/SMF			
B = B type pin out		N = 3mm Armor/PMF Y = 3mm/100 MMF Z = 900um/100 MMF			




Shipping Data Includes: I_{OP} , I_{TH} , I_{MON} at Po @ 25C, L-I curve, V-I curve, and L- I_{MON} curve to Po

Each purchased FiberMax is provided with test data. Please refer to this data before using the FiberMax.

Electrical Pin Out Configurations Available

Mechanical Outline (dimensions in mm)

Blue Sky Research is able to manufacture additional wavelength FMXL's, and has the capability to use 3.8, 5.6 and/or 9.0 mm TO packages.

Fiber Pigtailed 830nm Laser Module

Handling Care and Precautions for Use of FiberMax™ Modules

1. Absolute Maximum Ratings

Do not exceed, *even momentarily*, the maximum ratings (see page 1, table). When a FiberMax module is driven in excess of it's maximum ratings, it can cause at minimum a considerable reduction in reliability, and potentially instantaneous failure.

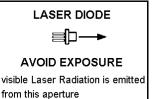
- a. FiberMax modules may be damaged by surge currents generated at power on-off operation. Check on the transient characteristics of the power supply to make sure that such surges do not exceed the maximum ratings.
- b. The maximum ratings are specified for a case temperature of 25°C. Designs should be made to work well within this temperature range. As the case temperature goes up, power dissipation as well as maximum light output power is reduced.

2. Soldering Conditions

Maximum solder-tip temperature is 260°C and soldering time must be within 3.0 seconds. A minimum solder clearance of 1.6mm should be maintained from the root of the lead.

3. Prevention of Breakdown due to Static Electricity

FiberMax modules may be adversely affected by static electricity and surge currents and, consequently, cause breakdown of the module and reduction of reliability unless the following precautions are taken:


- a. Power supplies, installation and measuring equipment should be grounded. A noise filter or noise-cut transformer should be provided on any power supply inputs.
- b. Anyone working with a FiberMax module should be grounded through high resistance (500 K Ohm 1M Ohm) by means of a ground strap and wrist band (for example).
- c. Soldering irons should be grounded to protect laser modules from voltage leaks.
- d. During operation of the FiberMax module, working clothes, hats, and shoes should be static-protected. Cotton-based clothing is preferred.
- e. Any container for carriage and storage should be static-protected.
- f. Avoid using laser modules in an environment where high frequency surge currents may be generated by an inductive electric field (such as a fluorescent lamp). These fields can also cause breakdown or deterioration of the laser module.

4. Package Handling

- a. The laser module package should not be cut off, reworked, or deformed. Care should be taken when handling the fiber to avoid kinking it.
- b. Do not touch the ferrule end. Any scratch or contamination may result in reduction of optical characteristics.
- c. Remove small contaminates on the ferrule surface carefully using a soft cotton tip stick with a small amount of methyl alcohol.

5. Safety

The output light from laser modules is harmful to a human body even if it is invisible. Avoid looking at the output light of a FiberMax module directly, or even indirectly through a lens during operation. Observance of operation should be through an infrared TV camera or related equipment. Refer to IEC 825-1 and 21 CFR 1040.10-1040.11 as a radiation safety standard for laser products.

Fiber Pigtailed 905nm Laser Module

Description

FiberMax905 is a fiber-pigtailed red laser module delivering superior performance for today's demanding electro-optic applications. Based on Blue Sky Research laser packaging technology, the FiberMax905 provides excellent coupling efficiency and stability in a cost effective package. The thermally stable design of the FiberMax905, based on our standard FiberMAX packaging technology, is a proven, stable package with many thousands of lasers operating in demanding applications. The units are offered with Multimode, Polarization Maintaining Single Mode or Single Mode fiber, 3mm or 0.9mm jacketing and a range of collimator options.

Optical and Electrical Characteristics

Optical and E	iccti icui	Ciidit			,	
Item	Symbol	Unit	Min	Тур	Max	Test Condition
Test Conditions						
Optical power	Po	mW	5	6	-	Tc=25°C
Threshold current	$I_{\scriptscriptstyle TH}$	mA	-	15	25	Tc=25°C
Operating current	I_{OP}	mA	-	40	60	Tc=25°C
Operating voltage	${ m V}_{ m OP}$	V	1.6	2.0	2.5	Tc=25°C
Lasing wavelength	λ	nm	890	905	920	Tc=25°C
Monitor current	$\boldsymbol{I}_{\text{mon}}$	mA	0.1	0.4	0.6	Tc=25°C
Electrical pin out			A	A, B, 1	Е	

Absolute Maximum Rating

Item	Symbol	Unit	Min	Max	Test Condition
Operating temperature	T_{OPR}	°C	-10	+50	
Storage temperature	T_{STG}	°C	-40	+85	
LD reverse voltage	V _R (LD)	V	-	2	Tc=25°C
PD reverse voltage	V _R (PD)	V	-	30	Tc=25°C

Fiber Specs

Single mode fiber w/ 3mm, 900um or metal protective jacketing

Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.13	
Mode Field Diameter @ 630nm	MFD	um	3.5	4.0	4.5
Length	L	meter	-	1	-

Fiber Pigtailed 905nm Laser Module

Polarization maintaining fiber w/ 3mm, 900um or metal protective jacketing

		8			
Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.11	
Mode Field Diameter @ 630nm	MFD	um	4.5	5.0	5.5
Length	L	meter	-	1	-
Polarization Extinction Ratio	PER	dB	17	20	-

Note: Polarization and slow axis is aligned to the keyway on the connector.

The keyway is narrow Key for FC/APC connector.

Multimode fiber w/3mm, 900um or metal protective jacketing

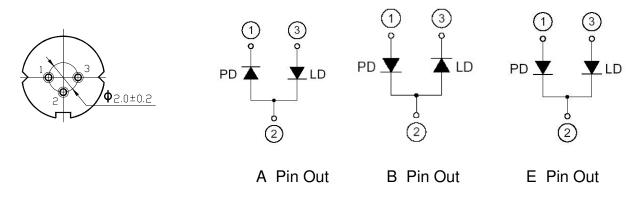
Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.22	
Core Diameter	MFD	um	50	50	100
Length	L	meter	-	1	-

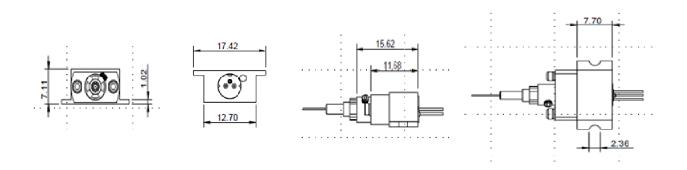
Collimator Options (SM or PM)

Туре	M	N	P	Q
Beam Diameter (1/e ² , mm, ±25%)	0.8	1.3	1.9	3.2
Divergence (mrad)	<1.2	<0.8	<0.5	< 0.4

FiberMax905 PART ORDERING TABLE

FMXL-905-ZZZ-Q-FCW


XXX = Wavelength	ZZZ = Power Out	Q = Cable Type	F = Connector	C = Collimator	W = Pin out
905 = 905nm	005 = 5mW	T = 900um / SMF	0 = No connector	0 = None	Α
		S = 3mm / SMF	S = SC/PC	M = 0.8 mm	В
Example:		M = 900um / PMF	G = SC/APC	N = 1.3 mm	E
FMXL-905-005-P-A0B		P = 3mm / PMF	F = FC/PC	P = 1.9 mm	
905 = 905 nm wavelength		A = 3mm/62.5 MMF	A = FC/APC	Q = 3.2 mm	
005 = 5 mW output		B = 3mm/50 MMF	R = ferrule only		
P = PM Fiber 3mm jacket		E = 900um/SMF28			
A = FC/APC connector		F = 3mm/SMF28			
0 = no collimator		K = 3mm Armor/SMF			
B = B type pin out		N = 3mm Armor/PMF Y = 3mm/100 MMF Z = 900um/100 MMF			


Shipping Data Includes: I_{OP} , I_{TH} , I_{MON} at Po @ 25C, L-I curve, V-I curve, and L- I_{MON} curve to Po

Each purchased FiberMax is provided with test data. Please refer to this data before using the FiberMax.

Electrical Pin Out Configurations Available

Mechanical Outline (Dimensions in mm)

Blue Sky Research is able to manufacture additional wavelength FMXL's, and has the capability to use 3.8, 5.6 and/or 9.0 mm TO packages.

Fiber Pigtailed 905nm Laser Module

Handling Care and Precautions for Use of FiberMax™ Modules

1. Absolute Maximum Ratings

Do not exceed, even momentarily, the maximum ratings (see page 1, table). When a FiberMax module is driven in excess of it's maximum ratings, it can cause at minimum a considerable reduction in reliability, and potentially instantaneous failure.

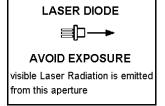
- a. FiberMax modules may be damaged by surge currents generated at power on-off operation. Check on the transient characteristics of the power supply to make sure that such surges do not exceed the maximum ratings.
- b. The maximum ratings are specified for a case temperature of 25°C. Designs should be made to work well within this temperature range. As the case temperature goes up, power dissipation as well as maximum light output power is reduced.

2. Soldering Conditions

Maximum solder-tip temperature is 260°C and soldering time must be within 3.0 seconds. A minimum solder clearance of 1.6mm should be maintained from the root of the lead.

3. Prevention of Breakdown due to Static Electricity

FiberMax modules may be adversely affected by static electricity and surge currents and, consequently, cause breakdown of the module and reduction of reliability unless the following precautions are taken:


- a. Power supplies, installation and measuring equipment should be grounded. A noise filter or noise-cut transformer should be provided on any power supply inputs.
- b. Anyone working with a FiberMax module should be grounded through high resistance (500 K Ohm 1M Ohm) by means of a ground strap and wrist band (for example).
- c. Soldering irons should be grounded to protect laser modules from voltage leaks.
- d. During operation of the FiberMax module, working clothes, hats, and shoes should be static-protected. Cotton-based clothing is preferred.
- e. Any container for carriage and storage should be static-protected.
- f. Avoid using laser modules in an environment where high frequency surge currents may be generated by an inductive electric field (such as a fluorescent lamp). These fields can also cause breakdown or deterioration of the laser module.

4. Package Handling

- a. The laser module package should not be cut off, reworked, or deformed. Care should be taken when handling the fiber to avoid kinking it.
- b. Do not touch the ferrule end. Any scratch or contamination may result in reduction of optical characteristics.
- c. Remove small contaminates on the ferrule surface carefully using a soft cotton tip stick with a small amount of methyl alcohol.

5. Safety

The output light from laser modules is harmful to a human body even if it is invisible. Avoid looking at the output light of a FiberMax module directly, or even indirectly through a lens during operation. Observance of operation should be through an infrared TV camera or related equipment. Refer to IEC 825-1 and 21 CFR 1040.10-1040.11 as a radiation safety standard for laser products.

Fiber Pigtailed 980nm Laser Module

Description

FiberMax980 is a fiber-pigtailed IR laser module delivering superior performance for today's demanding electro-optic applications. Based on Blue Sky Research laser packaging technology, the FiberMax980 provides excellent coupling efficiency and stability in a cost effective package. The thermally stable design of the FiberMax980, based on our standard FiberMAX packaging technology, is a proven, stable package with many thousands of lasers operating in demanding applications. The units are offered with Multimode, Polarization Maintaining Single Mode or Single Mode fiber, 3mm or 0.9mm jacketing and a range of collimator options.

Optical and Electrical Characteristics

Optical and E	iccti icui	Chuit	ictor		,	
Item	Symbol	Unit	Min	Тур	Max	Test Condition
Test Conditions						
Optical power	Po	mW	20	25	-	Tc=25°C
Threshold current	$I_{\scriptscriptstyle TH}$	mA	-	12	20	Tc=25°C
Operating current	I_{OP}	mA	-	75	100	Tc=25°C
Operating voltage	${ m V}_{ m OP}$	V	1.0	1.5	2.1	Tc=25°C
Lasing wavelength	λ	nm	970	980	990	Tc=25°C
Monitor current	$\boldsymbol{I}_{\text{mon}}$	mA	0.1	0.3	0.5	Tc=25°C
Electrical pin out				В		

Absolute Maximum Rating

Item	Symbol	Unit	Min	Max	Test Condition
Operating temperature	T_{OPR}	°C	-10	+50	
Storage temperature	T_{STG}	°C	-40	+85	
LD reverse voltage	V _R (LD)	V	-	2	Tc=25°C
PD reverse voltage	V _R (PD)	V	-	30	Tc=25°C

Fiber Specs

Single mode fiber w/ 3mm, 900um or metal protective jacketing

single mode mode in commy social or model proceeding justices.							
Item	Symbol	Unit	Min	Тур	Max		
Fiber numerical aperture	NA		-	0.13			
Mode Field Diameter @ 630nm	MFD	um	3.5	4.0	4.5		
Length	L	meter	-	1	-		

Fiber Pigtailed 980nm Laser Module

Polarization maintaining fiber w/3mm, 900um or metal protective jacketing

		<u> </u>			
Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.11	
Mode Field Diameter @ 630nm	MFD	um	4.5	5.0	5.5
Length	L	meter	-	1	-
Polarization Extinction Ratio	PER	dB	17	20	-

Note: Polarization and slow axis is aligned to the keyway on the connector.

The keyway is narrow Key for FC/APC connector.

Multimode fiber w/3mm, 900um or metal protective jacketing

			0		
Item	Symbol	Unit	Min	Тур	Max
Fiber numerical aperture	NA		-	0.22	
Core Diameter	MFD	um	50	50	100
Length	L	meter	-	1	-

Collimator Options (SM or PM)

Туре	M	N	P	Q
Beam Diameter (1/e ² , mm, ±25%)	0.8	1.3	1.9	3.2
Divergence (mrad)	<1.2	<0.8	< 0.5	<0.4

FiberMax980 PART ORDERING TABLE

FMXL-980-ZZZ-Q-FCW

XXX = Wavelength ZZZ = Power Out Q = Cable Type F = Connector C = Collimator W = Pin out

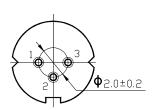
980 = 980nm 025 = 25 mWT = 900um / SMF0 = No connector 0 = None

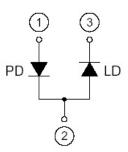
S = 3mm / SMFS = SC/PCM = 0.8 mmВ

Example: M = 900um / PMFG = SC/APCN = 1.3 mmFMXL-980-025-P-A0B F = FC/PCP = 3mm / PMFP = 1.9 mm

980 = 980 nm wavelength A = FC/APCQ = 3.2 mmA = 3mm/62.5 MMF

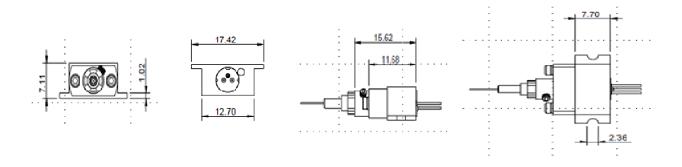
025 = 25 mW output B = 3mm/50 MMFR = ferrule only


P = PM Fiber 3mm jacket E = 900um/SMF28A = FC/APC connector F = 3mm/SMF280 = no collimator K = 3mm Armor/SMFB = B type pin out N = 3mm Armor/PMF



Shipping Data Includes: I_{OP} , I_{TH} , I_{MON} at Po @ 25C, L-I curve, V-I curve, and L- I_{MON} curve to Po

Each purchased FiberMax is provided with test data. Please refer to this data before using the FiberMax.


Electrical Pin Out Configurations Available

B Pin Out

Mechanical Outline (Dimensions in mm)

Blue Sky Research is able to manufacture additional wavelength FMXL's, and has the capability to use 3.8, 5.6 and/or 9.0 mm TO packages.

Fiber Pigtailed 980nm Laser Module

Handling Care and Precautions for Use of FiberMax™ Modules

1. Absolute Maximum Ratings

Do not exceed, *even momentarily*, the maximum ratings (see page 1, table). When a FiberMax module is driven in excess of it's maximum ratings, it can cause at minimum a considerable reduction in reliability, and potentially instantaneous failure.

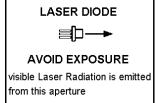
- a. FiberMax modules may be damaged by surge currents generated at power on-off operation. Check on the transient characteristics of the power supply to make sure that such surges do not exceed the maximum ratings.
- b. The maximum ratings are specified for a case temperature of 25°C. Designs should be made to work well within this temperature range. As the case temperature goes up, power dissipation as well as maximum light output power is reduced.

2. Soldering Conditions

Maximum solder-tip temperature is 260°C and soldering time must be within 3.0 seconds. A minimum solder clearance of 1.6mm should be maintained from the root of the lead.

3. Prevention of Breakdown due to Static Electricity

FiberMax modules may be adversely affected by static electricity and surge currents and, consequently, cause breakdown of the module and reduction of reliability unless the following precautions are taken:


- a. Power supplies, installation and measuring equipment should be grounded. A noise filter or noise-cut transformer should be provided on any power supply inputs.
- b. Anyone working with a FiberMax module should be grounded through high resistance (500 K Ohm 1M Ohm) by means of a ground strap and wrist band (for example).
- c. Soldering irons should be grounded to protect laser modules from voltage leaks.
- d. During operation of the FiberMax module, working clothes, hats, and shoes should be static-protected. Cotton-based clothing is preferred.
- e. Any container for carriage and storage should be static-protected.
- f. Avoid using laser modules in an environment where high frequency surge currents may be generated by an inductive electric field (such as a fluorescent lamp). These fields can also cause breakdown or deterioration of the laser module.

4. Package Handling

- a. The laser module package should not be cut off, reworked, or deformed. Care should be taken when handling the fiber to avoid kinking it.
- b. Do not touch the ferrule end. Any scratch or contamination may result in reduction of optical characteristics.
- c. Remove small contaminates on the ferrule surface carefully using a soft cotton tip stick with a small amount of methyl alcohol.

5. Safety

The output light from laser modules is harmful to a human body even if it is invisible. Avoid looking at the output light of a FiberMax module directly, or even indirectly through a lens during operation. Observance of operation should be through an infrared TV camera or related equipment. Refer to IEC 825-1 and 21 CFR 1040.10-1040.11 as a radiation safety standard for laser products.

