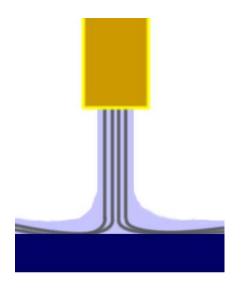
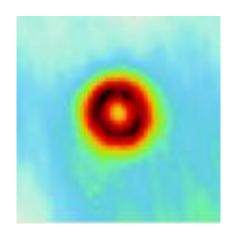

Fluid Jet Polishing

- LightMachinery has developed a patented computer controlled polishing technology: Fluid Jet Polishing (FJP)
- FJP allows to produce consistent surface flatness or thickness uniformity of 3 nanometers.
- LightMachinery utilizes FJP on a daily basis to produce high value optical components, also used for its high-end spectrometers

Before (115 nm variation in thickness)

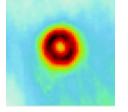


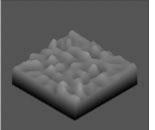

After (3 nm)

Fluid Jet Polishing: Using a Stream of Fluid

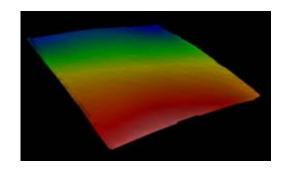
- A flow of abrasive nano-particles from a jet nozzle hits the optical surface
- Dwell time of the nozzle equates to removal volume
- As the flow hits the surface of the optic the direction of flow changes by 90 degrees (from downward to outward)
- The work done on the surface (tool shape) is in the shape of a second order gaussian (donut)

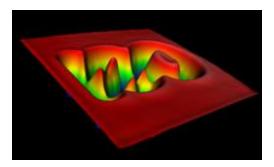
Dwell Map Computation


- Measure the current surface
- Create a target surface
- Load the fluid jet tool profile
- Software calculates the optimal tool dwell map to achieve the desired change
- Software determines the predicted surface after fluid jet processing


Starting Surface

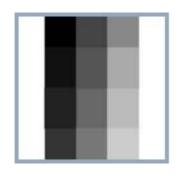
Target Surface

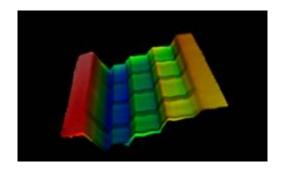

Tool Profile

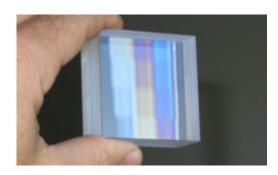

Predicted Surface

LightMachinery

FJP Examples


Starting Surface


Processed


Optically Contacted

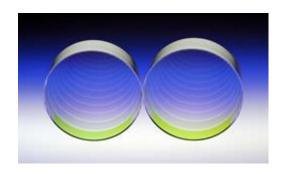
Target Profile

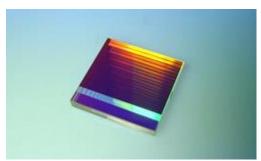
After Processing

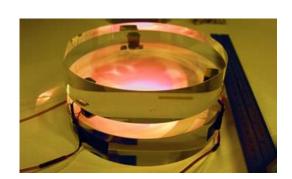
Optically Contacted

LightMachinery

More Fluid Jet Polishing Examples


MANIC


DASH


HMI

Etalons

VIPA Etalons

Large Etalons

